Quellen: Sport- & Physiotherapie

Beitrag 1:

  1. Aboodarda, S. J., Spence, A. J., & Button, D. C. (2015). Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC musculoskeletal disorders16, 265. https://doi.org/10.1186/s12891-015-0729-5
  2. Alpay, Z., Saed, G. M., & Diamond, M. P. (2008). Postoperative adhesions: from formation to prevention. Seminars in reproductive medicine, 26(4), 313–321. https://doi.org/10.1055/s-0028-1082389
  3. Barnes, M.F. (1997). The basic science of myofascial release: morphologic change in connective tissue. Journal of Bodywork and Movement Therapies, 1, 231-238.
  4. Barral, J. P., & Mercier, P. (2005). Visceral manipulation. Eastland Press.
  5. Beardsley, C., & Škarabot, J. (2015). Effects of self-myofascial release: A systematic review. Journal of bodywork and movement therapies, 19(4), 747–758. https://doi.org/10.1016/j.jbmt.2015.08.007
  6. Behm, D. G., & Wilke, J. (2019). Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports medicine (Auckland, N.Z.), 49(8), 1173–1181. https://doi.org/10.1007/s40279-019-01149-y
  7. Bialosky, J. E., Beneciuk, J. M., Bishop, M. D., Coronado, R. A., Penza, C. W., Simon, C. B., & George, S. Z. (2018). Unraveling the Mechanisms of Manual Therapy: Modeling an Approach. The Journal of orthopaedic and sports physical therapy, 48(1), 8–18. https://doi.org/10.2519/jospt.2018.7476
  8. Bordoni, B., Escher, A. R., Tobbi, F., Pianese, L., Ciardo, A., Yamahata, J., Hernandez, S., & Sanchez, O. (2022). Fascial Nomenclature: Update 2022. Cureus, 14(6), e25904. https://doi.org/10.7759/cureus.25904
  9. Bron, C., & Dommerholt, J. D. (2012). Etiology of myofascial trigger points. Current pain and headache reports, 16(5), 439–444. https://doi.org/10.1007/s11916-012-0289-4
  10. Burk, C., Perry, J., Lis, S., Dischiavi, S., & Bleakley, C. (2019). Can Myofascial Interventions Have a Remote Effect on ROM? A Systematic Review and Meta-Analysis. Journal of sport rehabilitation, 29(5), 650–656. https://doi.org/10.1123/jsr.2019-0074
  11. Cheatham, S. W., Kolber, M. J., Cain, M., & Lee, M. (2015). THE EFFECTS OF SELF-MYOFASCIAL RELEASE USING A FOAM ROLL OR ROLLER MASSAGER ON JOINT RANGE OF MOTION, MUSCLE RECOVERY, AND PERFORMANCE: A SYSTEMATIC REVIEW. International journal of sports physical therapy, 10(6), 827–838.
  12. Chen, Z., Wu, J., Wang, X., Wu, J., & Ren, Z. (2021). The effects of myofascial release technique for patients with low back pain: A systematic review and meta-analysis. Complementary therapies in medicine, 59, 102737. https://doi.org/10.1016/j.ctim.2021.102737
  13. Carter, A., Popowski, K., Cheng, K., Greenbaum, A., Ligler, F. S., & Moatti, A. (2021). Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity, 3(4), 255–271. https://doi.org/10.1089/bioe.2021.0019
  14. Chaudhry, H., Schleip, R., Ji, Z., Bukiet, B., Maney, M., & Findley, T. (2008). Three-dimensional mathematical model for deformation of human fasciae in manual therapy. The Journal of the American Osteopathic Association108(8), 379–390. https://doi.org/10.7556/jaoa.2008.108.8.379
  15. Dahl, M., Hansen, P., Stål, P., Edmundsson, D., & Magnusson, S. P. (2011). Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome. Clinical orthopaedics and related research, 469(12), 3495–3500. https://doi.org/10.1007/s11999-011-2073-x
  16. De Groef, A., Van Kampen, M., Vervloesem, N., De Geyter, S., Dieltjens, E., Christiaens, M. R., Neven, P., Geraerts, I., & Devoogdt, N. (2017). An evaluation tool for myofascial adhesions in patients after breast cancer (MAP-BC evaluation tool): Development and interrater reliability. PloS one, 12(6), e0179116. https://doi.org/10.1371/journal.pone.0179116
  17. Dölken, M. (2002). Was muss ein Manualtherapeut über die Physiologie des Bindegewebes und die Entwicklung einer Bewegungseinschränkung wissen? Manuelle Medizin, 40, 169-176.
  18. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of manipulative and physiological therapeutics, 37(9), 614–627. https://doi.org/10.1016/j.jmpt.2014.09.001
  19. Jami L. (1992). Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiological reviews, 72(3), 623–666. https://doi.org/10.1152/physrev.1992.72.3.623
  20. Juhan, D. (1987). Job´s Body: A handbook for for Bodywork. Station Hill Press.
  21. Konrad, A., Nakamura, M., & Behm, D. G. (2022). The Effects of Foam Rolling Training on Performance Parameters: A Systematic Review and Meta-Analysis including Controlled and Randomized Controlled Trials. International journal of environmental research and public health, 19(18), 11638. https://doi.org/10.3390/ijerph191811638
  22. Konrad, A., Nakamura, M., Paternoster, F. K., Tilp, M., & Behm, D. G. (2022a). A comparison of a single bout of stretching or foam rolling on range of motion in healthy adults. European journal of applied physiology, 122(7), 1545–1557. https://doi.org/10.1007/s00421-022-04927-1
  23. Konrad, A., Nakamura, M., Tilp, M., Donti, O., & Behm, D. G. (2022b). Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 52(10), 2523–2535. https://doi.org/10.1007/s40279-022-01699-8
  24. Konrad, A., Tilp, M., & Nakamura, M. (2021). A Comparison of the Effects of Foam Rolling and Stretching on Physical Performance. A Systematic Review and Meta-Analysis. Frontiers in physiology, 12, 720531. https://doi.org/10.3389/fphys.2021.720531
  25. Kumka, M., & Bonar, J. (2012). Fascia: a morphological description and classification system based on a literature review. The Journal of the Canadian Chiropractic Association, 56(3), 179–191.
  26. Lara-Palomo, I. C., Castro-Sánchez, A. M., Córdoba-Peláez, M. M., Albornoz-Cabello, M., & Ortiz-Comino, L. (2021). Effect of Myofascial Therapy on Pain and Functionality of the Upper Extremities in Breast Cancer Survivors: A Systematic Review and Meta-Analysis. International journal of environmental research and public health, 18(9), 4420. https://doi.org/10.3390/ijerph18094420
  27. Mauntel, T.C., Clark, M.A., & Padua, D.A. (2014). Effectiveness of Myofascial Release Therapies on Physical Performance Measurements: A Systematic Review. Athletic Training & Sports Health Care, 6, 189-196.
  28. Medeiros, F., Martins, W., Behm, D., Ribeiro, D., Marinho, E., Santos, W., & Viana, R. B. (2023). Acute effects of foam roller or stick massage on indirect markers from exercise-induced muscle damage in healthy individuals: A systematic review and meta-analysis. Journal of bodywork and movement therapies, 35, 273–283. https://doi.org/10.1016/j.jbmt.2023.04.016
  29. Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science (New York, N.Y.), 150(3699), 971–979. https://doi.org/10.1126/science.150.3699.971
  30. Muder, D., & Vedung, T. (2014). Interosseous-lumbrical adhesions secondary to an infection: a case report. Journal of medical case reports, 8, 301. https://doi.org/10.1186/1752-1947-8-301
  31. Myburgh, C., Larsen, A. H., & Hartvigsen, J. (2008). A systematic, critical review of manual palpation for identifying myofascial trigger points: evidence and clinical significance. Archives of physical medicine and rehabilitation, 89(6), 1169–1176. https://doi.org/10.1016/j.apmr.2007.12.033
  32. Pagaduan, J. C., Chang, S. Y., & Chang, N. J. (2022). Chronic Effects of Foam Rolling on Flexibility and Performance: A Systematic Review of Randomized Controlled Trials. International journal of environmental research and public health, 19(7), 4315. https://doi.org/10.3390/ijerph19074315
  33. Quintner, J. L., Bove, G. M., & Cohen, M. L. (2015). A critical evaluation of the trigger point phenomenon. Rheumatology (Oxford, England), 54(3), 392–399. https://doi.org/10.1093/rheumatology/keu471
  34. Rolf, I. (1977). Rolfing: Re-establishing the Natural Alignment and Structural Integration of the Human Body for Vitality and Well-Being. Inner Traditions Bear and Company
  35. Scheper, M. C., de Vries, J. E., Verbunt, J., & Engelbert, R. H. (2015). Chronic pain in hypermobility syndrome and Ehlers-Danlos syndrome (hypermobility type): it is a challenge. Journal of pain research, 8, 591–601. https://doi.org/10.2147/JPR.S64251
  36. Schleip, R. (2003a). Fascial plasticity - A new neurobiological explanation: Part 1. Journal of Bodywork and Movement Therapies, 7(1), 11-19. https://doi.org/10.1016/S1360-8592(02)00067-0
  37. Schleip, R. (2003b). Fascial plasticity – a new neurobiological explanation Part 2. Journal of Bodywork and Movement Therapies, 7, 104-116.
  38. Schleip, R., Hedley, G., & Yucesoy, C. A. (2019). Fascial nomenclature: Update on related consensus process. Clinical anatomy (New York, N.Y.), 32(7), 929–933. https://doi.org/10.1002/ca.23423
  39. Schroeder, A. N., & Best, T. M. (2015). Is self myofascial release an effective preexercise and recovery strategy? A literature review. Current sports medicine reports, 14(3), 200–208. https://doi.org/10.1249/JSR.0000000000000148
  40. Shah, J. P., Danoff, J. V., Desai, M. J., Parikh, S., Nakamura, L. Y., Phillips, T. M., & Gerber, L. H. (2008). Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Archives of physical medicine and rehabilitation, 89(1), 16–23. https://doi.org/10.1016/j.apmr.2007.10.018
  41. Simons D. G. (2004). Review of enigmatic MTrPs as a common cause of enigmatic musculoskeletal pain and dysfunction. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology, 14(1), 95–107. https://doi.org/10.1016/j.jelekin.2003.09.018
  42. Simons, D. G., Hong, C. Z., & Simons, L. S. (2002). Endplate potentials are common to midfiber myofacial trigger points. American journal of physical medicine & rehabilitation, 81(3), 212–222. https://doi.org/10.1097/00002060-200203000-00010
  43. Skinner, B., Moss, R., & Hammond, L. (2020). A systematic review and meta-analysis of the effects of foam rolling on range of motion, recovery and markers of athletic performance. Journal of bodywork and movement therapies, 24(3), 105–122. https://doi.org/10.1016/j.jbmt.2020.01.007
  44. Sparks, C., Cleland, J. A., Elliott, J. M., Zagardo, M., & Liu, W. C. (2013). Using functional magnetic resonance imaging to determine if cerebral hemodynamic responses to pain change following thoracic spine thrust manipulation in healthy individuals. The Journal of orthopaedic and sports physical therapy, 43(5), 340–348. https://doi.org/10.2519/jospt.2013.4631
  45. Thalhamer C. (2018). A fundamental critique of the fascial distortion model and its application in clinical practice. Journal of bodywork and movement therapies22(1), 112–117. https://doi.org/10.1016/j.jbmt.2017.07.009
  46. Threlkeld A. J. (1992). The effects of manual therapy on connective tissue. Physical therapy, 72(12), 893–902. https://doi.org/10.1093/ptj/72.12.893
  47. Typaldos, S. (2002). FDM: Clinical and theoretical application of the fascial distortion model within the practice of Medicine and Surgery. Orthopathic Global Health Publications.
  48. Ughreja, R. A., Venkatesan, P., Balebail Gopalakrishna, D., & Singh, Y. P. (2021). Effectiveness of myofascial release on pain, sleep, and quality of life in patients with fibromyalgia syndrome: A systematic review. Complementary therapies in clinical practice, 45, 101477. https://doi.org/10.1016/j.ctcp.2021.101477
  49. Vajapey, S., & Miller, T. L. (2017). Evaluation, diagnosis, and treatment of chronic exertional compartment syndrome: a review of current literature. The Physician and sportsmedicine, 45(4), 391–398. https://doi.org/10.1080/00913847.2017.1384289
  50. Ward, R.C. (2003). Integrated neuromusculoskeletal release and myofascial release. In: R.C. Ward RC (Hrsg.), Foundations for osteopathic medicine (2. Aufl., S. 931-968). Lippincott, Williams & Wilkins, Philadelphia.
  51. Wasserman, J. B., Copeland, M., Upp, M., & Abraham, K. (2019). Effect of soft tissue mobilization techniques on adhesion-related pain and function in the abdomen: A systematic review. Journal of bodywork and movement therapies, 23(2), 262–269. https://doi.org/10.1016/j.jbmt.2018.06.004
  52. Weerapong, P., Hume, P. A., & Kolt, G. S. (2005). The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports medicine (Auckland, N.Z.), 35(3), 235–256. https://doi.org/10.2165/00007256-200535030-00004
  53. Wiewelhove, T., Döweling, A., Schneider, C., Hottenrott, L., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2019). A Meta-Analysis of the Effects of Foam Rolling on Performance and Recovery. Frontiers in physiology, 10, 376. https://doi.org/10.3389/fphys.2019.00376
  54. Wilke, J., Müller, A. L., Giesche, F., Power, G., Ahmedi, H., & Behm, D. G. (2020). Acute Effects of Foam Rolling on Range of Motion in Healthy Adults: A Systematic Review with Multilevel Meta-analysis. Sports medicine (Auckland, N.Z.), 50(2), 387–402. https://doi.org/10.1007/s40279-019-01205-7
  55. Wilke, J., Schleip, R., Yucesoy, C. A., & Banzer, W. (2018). Not merely a protective packing organ? A review of fascia and its force transmission capacity. Journal of applied physiology (Bethesda, Md. : 1985), 124(1), 234–244. https://doi.org/10.1152/japplphysiol.00565.2017
  56. Wilke, J., Vogt, L., & Banzer, W. (2018). Immediate effects of self-myofascial release on latent trigger point sensitivity: a randomized, placebo-controlled trial. Biology of sport, 35(4), 349–354. https://doi.org/10.5114/biolsport.2018.78055
  57. Wiseman D. M. (2008). Disorders of adhesions or adhesion-related disorder: monolithic entities or part of something bigger--CAPPS?. Seminars in reproductive medicine, 26(4), 356–368. https://doi.org/10.1055/s-0028-1082394
  58. Young, J. D., Spence, A. J., & Behm, D. G. (2018). Roller massage decreases spinal excitability to the soleus. Journal of applied physiology (Bethesda, Md. : 1985)124(4), 950–959. https://doi.org/10.1152/japplphysiol.00732.2017
  59. Zondervan, K. T., Becker, C. M., & Missmer, S. A. (2020). Endometriosis. The New England journal of medicine, 382(13), 1244–1256. https://doi.org/10.1056/NEJMra1810764

Beitrag 2:

  1. Araújo, D., Hristovski, R., Seifert, L., Carvalho, J., & Davids, K. (2019). Ecological cognition: Expert decision-making behaviour in sport. International Review of Sport and Exercise Psychology, 12(1), 1–25. https://doi.org/10.1080/1750984X.2017.1349826
  2. Bowering, K. J., O'Connell, N. E., Tabor, A., Catley, M. J., Leake, H. B., Moseley, G. L., & Stanton, T. R. (2013). The effects of graded motor imagery and its components on chronic pain: a systematic review and meta-analysis. The journal of pain, 14(1), 3–13. https://doi.org/10.1016/j.jpain.2012.09.007
  3. Carrick F. R. (1997). Changes in brain function after manipulation of the cervical spine. Journal of manipulative and physiological therapeutics, 20(8), 529–545.
  4. Clark A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and brain sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477
  5. Demortier, M., & Leboeuf-Yde, C. (2020). Unravelling Functional Neurology: an overview of all published documents by FR Carrick, including a critical review of research articles on its effect or benefit. Chiropractic & manual therapies, 28(1), 9. https://doi.org/10.1186/s12998-019-0287-2
  6. Gelfand, I. M., & Latash, M. L. (1998). On the problem of adequate language in motor control. Motor control2(4), 306–313. https://doi.org/10.1123/mcj.2.4.306
  7. Green, D. G., Sadedin, S., & Leishman, T. G. (2019). Self-organization. In B. Fath (Ed.), Encyclopedia of Ecology (2nd ed., Vol. 1, pp. 628-636). Elsevier. https://doi.org/10.1016/B978-0-444-63768-0.00696-X
  8. Harris, D. J., Wilson, M. R. & Vine, S. J. (2018). A Systematic Review of Commercial Cognitive Training Devices: Implications for Use in Sport. Frontiers in Psychology, 9, 709. https://doi.org/10.3389/fpsyg.2018.00709
  9. Lienhard, L. (2017). Training beginnt im Gehirn. Riva
  10. Lienhard, L. (2020). Kraft beginnt im Gehirn. Riva
  11. Limballe, A., Kulpa, R., & Bennett, S. (2022). Using Blur for Perceptual Investigation and Training in Sport? A Clear Picture of the Evidence and Implications for Future Research. Frontiers in psychology12, 752582. https://doi.org/10.3389/fpsyg.2021.752582
  12. Margach R. W. (2017). Chiropractic Functional Neurology: An Introduction. Integrative medicine (Encinitas, Calif.), 16(2), 44–45.
  13. Meyer, A. L., & Leboeuf-Yde, C. (2018). Unravelling functional neurology: a critical review of clinical research articles on the effect or benefit of the functional neurology approach. Chiropractic & manual therapies, 26, 30. https://doi.org/10.1186/s12998-018-0198-7
  14. Meyer, A. L., Meyer, A., Etherington, S., & Leboeuf-Yde, C. (2017). Unravelling functional neurology: a scoping review of theories and clinical applications in a context of chiropractic manual therapy. Chiropractic & manual therapies, 25, 19. https://doi.org/10.1186/s12998-017-0151-1
  15. Moseley, G. L., Gallace, A., & Iannetti, G. D. (2012). Spatially defined modulation of skin temperature and hand ownership of both hands in patients with unilateral complex regional pain syndrome. Brain : a journal of neurology, 135(Pt 12), 3676–3686. https://doi.org/10.1093/brain/aws297
  16. Moseley, G. L., Gallace, A., & Spence, C. (2012). Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical 'body matrix'. Neuroscience and biobehavioral reviews, 36(1), 34–46. https://doi.org/10.1016/j.neubiorev.2011.03.013
  17. Renshaw, I., Davids, K., Araújo, D., Lucas, A., Roberts, W. M., Newcombe, D. J., & Franks, B. (2019). Evaluating Weaknesses of "Perceptual-Cognitive Training" and "Brain Training" Methods in Sport: An Ecological Dynamics Critique. Frontiers in psychology, 9, 2468. https://doi.org/10.3389/fpsyg.2018.02468
  18. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “Brain-Training” Programs Work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983
  19. Stanton, T. R., Lin, C. W., Smeets, R. J., Taylor, D., Law, R., & Lorimer Moseley, G. (2012). Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology (Oxford, England), 51(8), 1455–1464. https://doi.org/10.1093/rheumatology/kes048
  20. Wallwork, S. B., Bellan, V., Catley, M. J., & Moseley, G. L. (2016). Neural representations and the cortical body matrix: implications for sports medicine and future directions. British journal of sports medicine, 50(16), 990–996. https://doi.org/10.1136/bjsports-2015-095356
  21. Wallwork, S. B., Leake, H. B., Peek, A. L., Moseley, G. L., & Stanton, T. R. (2020). Implicit motor imagery performance is impaired in people with chronic, but not acute, neck pain. PeerJ, 8, e8553. https://doi.org/10.7717/peerj.8553
  22. Walton, C. C., Keegan, R. J., Martin, M., & Hallock, H. (2018). The Potential Role for Cognitive Training in Sport: More Research Needed. Frontiers in psychology, 9, 1121. https://doi.org/10.3389/fpsyg.2018.01121
  23. Yackinous, W. S. (2015). Overview of an Ecological System Dynamics Framework. Understanding Complex Ecosystem Dynamics, 83–91.

Beitrag 3:

  1. ACSM’s guidelines for exercise testing and prescription. (2021). Wolters Kluwer.
  2. Afonso, J., Clemente, F. M., Nakamura, F. Y., Morouço, P., Sarmento, H., Inman, R. A., & Ramirez-Campillo, R. (2021a). The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in physiology, 12, 677581. https://doi.org/10.3389/fphys.2021.677581
  3. Afonso, J., Olivares-Jabalera, J., & Andrade, R. (2021). Time to Move From Mandatory Stretching? We Need to Differentiate "Can I?" From "Do I Have To?". Frontiers in physiology, 12, 714166. https://doi.org/10.3389/fphys.2021.714166
  4. Afonso, J., Ramirez-Campillo, R., Moscão, J., Rocha, T., Zacca, R., Martins, A., Milheiro, A. A., Ferreira, J., Sarmento, H., & Clemente, F. M. (2021b). Strength Training versus Stretching for Improving Range of Motion: A Systematic Review and Meta-Analysis. Healthcare (Basel, Switzerland), 9(4), 427. https://doi.org/10.3390/healthcare9040427
  5. Alizadeh, S., Daneshjoo, A., Zahiri, A., Anvar, S. H., Goudini, R., Hicks, J. P., Konrad, A., & Behm, D. G. (2023). Resistance Training Induces Improvements in Range of Motion: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 53(3), 707–722. https://doi.org/10.1007/s40279-022-01804-x
  6. Arntz, F., Markov, A., Behm, D. G., Behrens, M., Negra, Y., Nakamura, M., Moran, J., & Chaabene, H. (2023). Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis. Sports medicine (Auckland, N.Z.), 53(3), 723–745. https://doi.org/10.1007/s40279-022-01806-9
  7. Başturk, D., & Marangoz, I. (2018). The Effect of the Relationship among Leg Volume, Leg Mass and Flexibility on Success in University Student Elite Gymnasts. World Journal of Education.
  8. Behm, D. G., Alizadeh, S., Anvar, S. H., Drury, B., Granacher, U., & Moran, J. (2021a). Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports medicine (Auckland, N.Z.), 51(5), 945–959. https://doi.org/10.1007/s40279-020-01422-5
  9. Behm, D. G., Alizadeh, S., Daneshjoo, A., & Konrad, A. (2023). Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports medicine (Auckland, N.Z.), 10.1007/s40279-023-01847-8. Advance online publication. https://doi.org/10.1007/s40279-023-01847-8
  10. Behm, D. G., Alizadeh, S., Drury, B., Granacher, U., & Moran, J. (2021b). Non-local acute stretching effects on strength performance in healthy young adults. European journal of applied physiology, 121(6), 1517–1529. https://doi.org/10.1007/s00421-021-04657-w
  11. Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(1), 1–11. https://doi.org/10.1139/apnm-2015-0235
  12. Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European journal of applied physiology, 111(11), 2633–2651. https://doi.org/10.1007/s00421-011-1879-2
  13. Behm, D. G., Kay, A. D., Trajano, G., Alizadeh , S., & Blazevich, A. J. (2021c). Effects of stretching on injury risk reduction and balance. Journal of Clinical Exercise Physiology, 10(3), 106-116. https://doi.org/10.31189/2165-6193-10.3.106
  14. Behm, D. G., Kay, A. D., Trajano, G. S., & Blazevich, A. J. (2021d). Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. European journal of applied physiology, 121(1), 67–94. https://doi.org/10.1007/s00421-020-04538-8
  15. Bohm, S., Mersmann, F., & Arampatzis, A. (2015). Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports medicine - open, 1(1), 7. https://doi.org/10.1186/s40798-015-0009-9
  16. Brazier, J., Maloney, S., Bishop, C., Read, P. J., & Turner, A. N. (2019). Lower Extremity Stiffness: Considerations for Testing, Performance Enhancement, and Injury Risk. Journal of strength and conditioning research, 33(4), 1156–1166. https://doi.org/10.1519/JSC.0000000000002283
  17. Bryant, J., Cooper, D. J., Peters, D. M., & Cook, M. D. (2023). The Effects of Static Stretching Intensity on Range of Motion and Strength: A Systematic Review. Journal of functional morphology and kinesiology, 8(2), 37. https://doi.org/10.3390/jfmk8020037
  18. Bushey S. R. (1966). Relationship of modern dance performance to agility, balance, flexibility, power, and strength. Research quarterly, 37(3), 313–316.
  19. Cayco, C. S., Labro, A. V., & Gorgon, E. J. R. (2019). Hold-relax and contract-relax stretching for hamstrings flexibility: A systematic review with meta-analysis. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 35, 42–55. https://doi.org/10.1016/j.ptsp.2018.11.001
  20. Ceschia, A., Giacomini, S., Santarossa, S., Rugo, M., Salvadego, D., Da Ponte, A., Driussi, C., Mihaleje, M., Poser, S., & Lazzer, S. (2016). Deleterious effects of obesity on physical fitness in pre-pubertal children. European journal of sport science, 16(2), 271–278. https://doi.org/10.1080/17461391.2015.1030454
  21. Dijksma, I., Arslan, I. G., van Etten-Jamaludin, F. S., Elbers, R. G., Lucas, C., & Stuiver, M. M. (2020). Exercise Programs to Reduce the Risk of Musculoskeletal Injuries in Military Personnel: A Systematic Review and Meta-Analysis. PM & R : the journal of injury, function, and rehabilitation, 12(10), 1028–1037. https://doi.org/10.1002/pmrj.12360
  22. Fernández-Rodríguez, R., Álvarez-Bueno, C., Cavero-Redondo, I., Torres-Costoso, A., Pozuelo-Carrascosa, D. P., Reina-Gutiérrez, S., Pascual-Morena, C., & Martínez-Vizcaíno, V. (2022). Best Exercise Options for Reducing Pain and Disability in Adults With Chronic Low Back Pain: Pilates, Strength, Core-Based, and Mind-Body. A Network Meta-analysis. The Journal of orthopaedic and sports physical therapy, 52(8), 505–521. https://doi.org/10.2519/jospt.2022.10671
  23. Fletcher, G. F., Ades, P. A., Kligfield, P., Arena, R., Balady, G. J., Bittner, V. A., Coke, L. A., Fleg, J. L., Forman, D. E., Gerber, T. C., Gulati, M., Madan, K., Rhodes, J., Thompson, P. D., Williams, M. A., & American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention (2013). Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation, 128(8), 873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44
  24. Fonseca, S. T., Souza, T. R., Verhagen, E., van Emmerik, R., Bittencourt, N. F. N., Mendonça, L. D. M., Andrade, A. G. P., Resende, R. A., & Ocarino, J. M. (2020). Sports Injury Forecasting and Complexity: A Synergetic Approach. Sports medicine (Auckland, N.Z.), 50(10), 1757–1770. https://doi.org/10.1007/s40279-020-01326-4
  25. Ferro Moura Franco, K., Lenoir, D., Dos Santos Franco, Y. R., Jandre Reis, F. J., Nunes Cabral, C. M., & Meeus, M. (2021). Prescription of exercises for the treatment of chronic pain along the continuum of nociplastic pain: A systematic review with meta-analysis. European journal of pain (London, England), 25(1), 51–70. https://doi.org/10.1002/ejp.1666
  26. Freitas, S. R., Mendes, B., Le Sant, G., Andrade, R. J., Nordez, A., & Milanovic, Z. (2018). Can chronic stretching change the muscle-tendon mechanical properties? A review. Scandinavian journal of medicine & science in sports, 28(3), 794–806. https://doi.org/10.1111/sms.12957
  27. Freitas, S. R., & Mil-Homens, P. (2015). Effect of 8-week high-intensity stretching training on biceps femoris architecture. Journal of strength and conditioning research, 29(6), 1737–1740. https://doi.org/10.1519/JSC.0000000000000800
  28. Gando, Y., Murakami, H., Yamamoto, K., Kawakami, R., Ohno, H., Sawada, S. S., Miyatake, N., & Miyachi, M. (2017). Greater Progression of Age-Related Aortic Stiffening in Adults with Poor Trunk Flexibility: A 5-Year Longitudinal Study. Frontiers in physiology, 8, 454. https://doi.org/10.3389/fphys.2017.00454
  29. García-Hermoso, A., Cavero-Redondo, I., Ramírez-Vélez, R., Ruiz, J. R., Ortega, F. B., Lee, D. C., & Martínez-Vizcaíno, V. (2018). Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women. Archives of physical medicine and rehabilitation, 99(10), 2100–2113.e5. https://doi.org/10.1016/j.apmr.2018.01.008
  30. Grant, S., Hasler, T., Davies, C., Aitchison, T. C., Wilson, J., & Whittaker, A. (2001). A comparison of the anthropometric, strength, endurance and flexibility characteristics of female elite and recreational climbers and non-climbers. Journal of sports sciences, 19(7), 499–505. https://doi.org/10.1080/026404101750238953
  31. Green, B., Bourne, M. N., van Dyk, N., & Pizzari, T. (2020). Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. British journal of sports medicine, 54(18), 1081–1088. https://doi.org/10.1136/bjsports-2019-100983
  32. Gross, A., Kay, T. M., Paquin, J. P., Blanchette, S., Lalonde, P., Christie, T., Dupont, G., Graham, N., Burnie, S. J., Gelley, G., Goldsmith, C. H., Forget, M., Hoving, J. L., Brønfort, G., Santaguida, P. L., & Cervical Overview Group (2015). Exercises for mechanical neck disorders. The Cochrane database of systematic reviews, 1(1), CD004250. https://doi.org/10.1002/14651858.CD004250.pub5
  33. Guissard, N., & Duchateau, J. (2004). Effect of static stretch training on neural and mechanical properties of the human plantar-flexor muscles. Muscle & nerve, 29(2), 248–255. https://doi.org/10.1002/mus.10549
  34. Han, M., Qie, R., Shi, X., Yang, Y., Lu, J., Hu, F., Zhang, M., Zhang, Z., Hu, D., & Zhao, Y. (2022). Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose-response meta-analysis of cohort studies. British journal of sports medicine, 56(13), 733–739. https://doi.org/10.1136/bjsports-2021-104876
  35. Harvey, L. A., Katalinic, O. M., Herbert, R. D., Moseley, A. M., Lannin, N. A., & Schurr, K. (2017). Stretch for the treatment and prevention of contractures. The Cochrane database of systematic reviews, 1(1), CD007455. https://doi.org/10.1002/14651858.CD007455.pub3
  36. Hawke, F., Sadler, S. G., Katzberg, H. D., Pourkazemi, F., Chuter, V., & Burns, J. (2021). Non-drug therapies for the secondary prevention of lower limb muscle cramps. The Cochrane database of systematic reviews, 5(5), CD008496. https://doi.org/10.1002/14651858.CD008496.pub3
  37. Herbert, R. D., de Noronha, M., & Kamper, S. J. (2011). Stretching to prevent or reduce muscle soreness after exercise. The Cochrane database of systematic reviews, (7), CD004577. https://doi.org/10.1002/14651858.CD004577.pub3
  38. Jackson, A. W., Morrow, J. R., Jr, Brill, P. A., Kohl, H. W., 3rd, Gordon, N. F., & Blair, S. N. (1998). Relations of sit-up and sit-and-reach tests to low back pain in adults. The Journal of orthopaedic and sports physical therapy, 27(1), 22–26. https://doi.org/10.2519/jospt.1998.27.1.22
  39. Jayedi, A., Khan, T. A., Aune, D., Emadi, A., & Shab-Bidar, S. (2022). Body fat and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. International journal of obesity (2005), 46(9), 1573–1581. https://doi.org/10.1038/s41366-022-01165-5
  40. Jung, H., & Yamasaki, M. (2016). Association of lower extremity range of motion and muscle strength with physical performance of community-dwelling older women. Journal of physiological anthropology, 35(1), 30. https://doi.org/10.1186/s40101-016-0120-8
  41. Kato E., Kanehisa H., Fukunaga T., Kawakami Y. (2010) Changes in ankle joint stiffness due to stretching: The role of tendon elonga- tion of the gastrocnemius muscle. European Journal of Sport Science, 10(2)111–119. https://doi.org/10.1080/17461390903307834
  42. Kato, M., Nihei Green, F., Hotta, K., Tsukamoto, T., Kurita, Y., Kubo, A., & Takagi, H. (2020). The Efficacy of Stretching Exercises on Arterial Stiffness in Middle-Aged and Older Adults: A Meta-Analysis of Randomized and Non-Randomized Controlled Trials. International journal of environmental research and public health, 17(16), 5643. https://doi.org/10.3390/ijerph17165643
  43. Katzmarzyk, P. T., & Craig, C. L. (2002). Musculoskeletal fitness and risk of mortality. Medicine and science in sports and exercise, 34(5), 740–744. https://doi.org/10.1097/00005768-200205000-00002
  44. Kay, A. D., & Blazevich, A. J. (2012). Effect of acute static stretch on maximal muscle performance: a systematic review. Medicine and science in sports and exercise, 44(1), 154–164. https://doi.org/10.1249/MSS.0b013e318225cb27
  45. Knudson, D., Magnusson, P., & McHugh, M.P. (2000). Current Issues in Flexibility Fitness.
  46. Konrad, A., Močnik, R., Titze, S., Nakamura, M., & Tilp, M. (2021). The Influence of Stretching the Hip Flexor Muscles on Performance Parameters. A Systematic Review with Meta-Analysis. International journal of environmental research and public health, 18(4), 1936. https://doi.org/10.3390/ijerph18041936
  47. Kruse, N. T., & Scheuermann, B. W. (2017). Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?. Sports medicine (Auckland, N.Z.), 47(12), 2507–2520. https://doi.org/10.1007/s40279-017-0768-1
  48. Kubo, K., Kanehisa, H., & Fukunaga, T. (2002a). Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. The Journal of physiology, 538(Pt 1), 219–226. https://doi.org/10.1113/jphysiol.2001.012703
  49. Kubo, K., Kanehisa, H., & Fukunaga, T. (2002b). Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. Journal of applied physiology (Bethesda, Md. : 1985), 92(2), 595–601. https://doi.org/10.1152/japplphysiol.00658.2001
  50. Kubo, K., Kanehisa, H., Kawakami, Y., & Fukunaga, T. (2001). Influence of static stretching on viscoelastic properties of human tendon structures in vivo. Journal of applied physiology (Bethesda, Md. : 1985), 90(2), 520–527. https://doi.org/10.1152/jappl.2001.90.2.520
  51. Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. British journal of sports medicine, 48(11), 871–877. https://doi.org/10.1136/bjsports-2013-092538
  52. Lempke, L., Wilkinson, R., Murray, C., & Stanek, J. (2018). The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion. Journal of sport rehabilitation, 27(3), 289–294. https://doi.org/10.1123/jsr.2016-0098
  53. Leppänen, M., Aaltonen, S., Parkkari, J., Heinonen, A., & Kujala, U. M. (2014). Interventions to prevent sports related injuries: a systematic review and meta-analysis of randomised controlled trials. Sports medicine (Auckland, N.Z.), 44(4), 473–486. https://doi.org/10.1007/s40279-013-0136-8
  54. Lévenéz, M., Moeremans, M., Booghs, C., Vigouroux, F., Leveque, C., Hemelryck, W., & Balestra, C. (2023). Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports (Basel, Switzerland), 11(4), 73. https://doi.org/10.3390/sports11040073
  55. Maffulli, N., King, J. B., & Helms, P. (1994). Training in élite young athletes (the Training of Young Athletes (TOYA) Study): injuries, flexibility and isometric strength. British journal of sports medicine, 28(2), 123–136. https://doi.org/10.1136/bjsm.28.2.123
  56. Marín-Jiménez, N., Cruz-León, C., Perez-Bey, A., Conde-Caveda, J., Grao-Cruces, A., Aparicio, V. A., Castro-Piñero, J., & Cuenca-García, M. (2022). Predictive Validity of Motor Fitness and Flexibility Tests in Adults and Older Adults: A Systematic Review. Journal of clinical medicine, 11(2), 328. https://doi.org/10.3390/jcm11020328
  57. Mason, D. L., Dickens, V. A., & Vail, A. (2012). Rehabilitation for hamstring injuries. The Cochrane database of systematic reviews, 12, CD004575. https://doi.org/10.1002/14651858.CD004575.pub3
  58. Meckel, Y., Atterbom, H., Grodjinovsky, A., Ben-Sira, D., & Rotstein, A. (1995). Physiological characteristics of female 100 metre sprinters of different performance levels. The Journal of sports medicine and physical fitness, 35(3), 169–175.
  59. Medeiros, D. M., Cini, A., Sbruzzi, G., & Lima, C. S. (2016). Influence of static stretching on hamstring flexibility in healthy young adults: Systematic review and meta-analysis. Physiotherapy theory and practice, 32(6), 438–445. https://doi.org/10.1080/09593985.2016.1204401
  60. Medeiros, D. M., & Martini, T. F. (2018). Chronic effect of different types of stretching on ankle dorsiflexion range of motion: Systematic review and meta-analysis. Foot (Edinburgh, Scotland), 34, 28–35. https://doi.org/10.1016/j.foot.2017.09.006
  61. Milliken, L. A., Faigenbaum, A. D., Loud, R. L., & Westcott, W. L. (2008). Correlates of upper and lower body muscular strength in children. Journal of strength and conditioning research, 22(4), 1339–1346. https://doi.org/10.1519/JSC.0b013e31817393b1
  62. Moreland, J. D., Richardson, J. A., Goldsmith, C. H., & Clase, C. M. (2004). Muscle weakness and falls in older adults: a systematic review and meta-analysis. Journal of the American Geriatrics Society, 52(7), 1121–1129. https://doi.org/10.1111/j.1532-5415.2004.52310.x
  63. Nakamura, M., Ikezoe, T., Takeno, Y., & Ichihashi, N. (2012). Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo. European journal of applied physiology, 112(7), 2749–2755. https://doi.org/10.1007/s00421-011-2250-3
  64. Nishiwaki, M., Kurobe, K., Kiuchi, A., Nakamura, T., & Matsumoto, N. (2014). Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study. PloS one, 9(11), e113646. https://doi.org/10.1371/journal.pone.0113646
  65. Nunes, H. E. G., Alves, C. A. S., Jr, Gonçalves, E. C. A., & Silva, D. A. S. (2017). What Physical Fitness Component Is Most Closely Associated With Adolescents' Blood Pressure?. Perceptual and motor skills, 124(6), 1107–1120. https://doi.org/10.1177/0031512517730414
  66. Nunes, J. P., Schoenfeld, B. J., Nakamura, M., Ribeiro, A. S., Cunha, P. M., & Cyrino, E. S. (2020). Does stretch training induce muscle hypertrophy in humans? A review of the literature. Clinical physiology and functional imaging, 40(3), 148–156. https://doi.org/10.1111/cpf.12622
  67. Nuzzo J. L. (2020). The Case for Retiring Flexibility as a Major Component of Physical Fitness. Sports medicine (Auckland, N.Z.), 50(5), 853–870. https://doi.org/10.1007/s40279-019-01248-w
  68. Opplert, J., & Babault, N. (2018). Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature. Sports medicine (Auckland, N.Z.), 48(2), 299–325. https://doi.org/10.1007/s40279-017-0797-9
  69. Page P. (2012). Current concepts in muscle stretching for exercise and rehabilitation. International journal of sports physical therapy, 7(1), 109–119.
  70. Rijk, J. M., Roos, P. R., Deckx, L., van den Akker, M., & Buntinx, F. (2016). Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatrics & gerontology international, 16(1), 5–20. https://doi.org/10.1111/ggi.12508
  71. Roshanravan, B., Patel, K. V., Fried, L. F., Robinson-Cohen, C., de Boer, I. H., Harris, T., Murphy, R. A., Satterfield, S., Goodpaster, B. H., Shlipak, M., Newman, A. B., Kestenbaum, B., & Health ABC study (2017). Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study. The journals of gerontology. Series A, Biological sciences and medical sciences, 72(2), 284–291. https://doi.org/10.1093/gerona/glw210
  72. Silva, D. A. S., de Lima, T. R., & Tremblay, M. S. (2018). Association between Resting Heart Rate and Health-Related Physical Fitness in Brazilian Adolescents. BioMed research international, 2018, 3812197. https://doi.org/10.1155/2018/3812197
  73. Singh, A. S., Chin A Paw, M. J., Bosscher, R. J., & van Mechelen, W. (2006). Cross-sectional relationship between physical fitness components and functional performance in older persons living in long-term care facilities. BMC geriatrics, 6, 4. https://doi.org/10.1186/1471-2318-6-4
  74. Siriphorn, A., & Eksakulkla, S. (2020). Calf stretching and plantar fascia-specific stretching for plantar fasciitis: A systematic review and meta-analysis. Journal of bodywork and movement therapies, 24(4), 222–232. https://doi.org/10.1016/j.jbmt.2020.06.013
  75. Smith, T., Smith, B., Davis, M., Howell, D., & Servedio, F. J. (2000). Predictors of physical fitness in a college sample. Perceptual and motor skills, 91(3 Pt 1), 1009–1010. https://doi.org/10.2466/pms.2000.91.3.1009
  76. Sprague, A. L., Smith, A. H., Knox, P., Pohlig, R. T., & Grävare Silbernagel, K. (2018). Modifiable risk factors for patellar tendinopathy in athletes: a systematic review and meta-analysis. British journal of sports medicine, 52(24), 1575–1585. https://doi.org/10.1136/bjsports-2017-099000
  77. Thacker, S. B., Gilchrist, J., Stroup, D. F., & Kimsey, C. D., Jr (2004). The impact of stretching on sports injury risk: a systematic review of the literature. Medicine and science in sports and exercise, 36(3), 371–378. https://doi.org/10.1249/01.mss.0000117134.83018.f7
  78. Thomas, E., Bellafiore, M., Gentile, A., Paoli, A., Palma, A., & Bianco, A. (2021). Cardiovascular Responses to Muscle Stretching: A Systematic Review and Meta-analysis. International journal of sports medicine, 42(6), 481–493. https://doi.org/10.1055/a-1312-7131
  79. Thomas, E., Bianco, A., Paoli, A., & Palma, A. (2018). The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion. International journal of sports medicine, 39(4), 243–254. https://doi.org/10.1055/s-0044-101146
  80. Torres, R., Ribeiro, F., Alberto Duarte, J., & Cabri, J. M. (2012). Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: systematic review and meta-analysis. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 13(2), 101–114. https://doi.org/10.1016/j.ptsp.2011.07.005
  81. Weppler, C. H., & Magnusson, S. P. (2010). Increasing muscle extensibility: a matter of increasing length or modifying sensation?. Physical therapy, 90(3), 438–449. https://doi.org/10.2522/ptj.20090012
  82. Wilson, F., Walshe, M., O'Dwyer, T., Bennett, K., Mockler, D., & Bleakley, C. (2018). Exercise, orthoses and splinting for treating Achilles tendinopathy: a systematic review with meta-analysis. British journal of sports medicine, 52(24), 1564–1574. https://doi.org/10.1136/bjsports-2017-098913
  83. Whittaker, J. L., Small, C., Maffey, L., & Emery, C. A. (2015). Risk factors for groin injury in sport: an updated systematic review. British journal of sports medicine, 49(12), 803–809. https://doi.org/10.1136/bjsports-2014-094287
  84. Yamamoto, K., Kawano, H., Gando, Y., Iemitsu, M., Murakami, H., Sanada, K., Tanimoto, M., Ohmori, Y., Higuchi, M., Tabata, I., & Miyachi, M. (2009). Poor trunk flexibility is associated with arterial stiffening. American journal of physiology. Heart and circulatory physiology, 297(4), H1314–H1318. https://doi.org/10.1152/ajpheart.00061.2009
  85. Yeung, S. S., Yeung, E. W., & Gillespie, L. D. (2011). Interventions for preventing lower limb soft-tissue running injuries. The Cochrane database of systematic reviews, (7), CD001256. https://doi.org/10.1002/14651858.CD001256.pub2
  86. Yoo, T. K., Park, S. H., Park, S. J., & Lee, J. Y. (2022). Impact of Sex on the Association between Flexibility and Arterial Stiffness in Older Adults. Medicina (Kaunas, Lithuania), 58(6), 789. https://doi.org/10.3390/medicina58060789
  87. Young, W. B., & Pryor, L. (2007). Relationship between pre-season anthropometric and fitness measures and indicators of playing performance in elite junior Australian Rules football. Journal of science and medicine in sport, 10(2), 110–118. https://doi.org/10.1016/j.jsams.2006.06.003
  88. Zakaria, A. A., Kiningham, R. B., & Sen, A. (2015). Effects of Static and Dynamic Stretching on Injury Prevention in High School Soccer Athletes: A Randomized Trial. Journal of sport rehabilitation, 24(3), 229–235. https://doi.org/10.1123/jsr.2013-0114
  89. Zhang, W., & Bai, N. (2022). THE ROLE OF FUNCTIONAL DYNAMIC STRETCHING TRAINING IN DANCE SPORTS (Version 1). SciELO journals. https://doi.org/10.6084/m9.figshare.19915159.v1
  90. Zhao, Y., & Chung, P. K. (2016). Differences in Functional Fitness Among Older Adults With and Without Risk of Falling. Asian nursing research, 10(1), 51–55. https://doi.org/10.1016/j.anr.2015.10.007

Beitrag 4:

  1. Andersen, H., Ge, H. Y., Arendt-Nielsen, L., Danneskiold-Samsøe, B., & Graven-Nielsen, T. (2010). Increased trapezius pain sensitivity is not associated with increased tissue hardness. The journal of pain, 11(5), 491–499. https://doi.org/10.1016/j.jpain.2009.09.017
  2. Aughey R. J. (2011). Applications of GPS technologies to field sports. International journal of sports physiology and performance, 6(3), 295–310. https://doi.org/10.1123/ijspp.6.3.295
  3. Bialosky, J. E., Bishop, M. D., & Penza, C. W. (2017). Placebo Mechanisms of Manual Therapy: A Sheep in Wolf’s Clothing?. The Journal of orthopaedic and sports physical therapy47(5), 301–304. https://doi.org/10.2519/jospt.2017.0604
  4. Bleakley, C., McDonough, S., Gardner, E., Baxter, G. D., Hopkins, J. T., & Davison, G. W. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. The Cochrane database of systematic reviews2012(2), CD008262. https://doi.org/10.1002/14651858.CD008262.pub2
  5. Brown, F., Gissane, C., Howatson, G., van Someren, K., Pedlar, C., & Hill, J. (2017). Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports medicine (Auckland, N.Z.), 47(11), 2245–2267. https://doi.org/10.1007/s40279-017-0728-9
  6. Chaudhry, H., Schleip, R., Ji, Z., Bukiet, B., Maney, M., & Findley, T. (2008). Three-dimensional mathematical model for deformation of human fasciae in manual therapy. The Journal of the American Osteopathic Association108(8), 379–390. https://doi.org/10.7556/jaoa.2008.108.8.379
  7. Cochrane, D. (2004). Alternating hot and cold water immersion for athlete recovery: A review. Physical Therapy in Sport, 5(1), 26-32. https://doi.org/10.1016/j.ptsp.2003.10.002
  8. Costello, J. T., Baker, P. R., Minett, G. M., Bieuzen, F., Stewart, I. B., & Bleakley, C. (2015). Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. The Cochrane database of systematic reviews, (9), CD010789. https://doi.org/10.1002/14651858.CD010789.pub2
  9. Costello, J.T., McNamara, P.M., O'Connell, M., Algar, L., Leahy, M.J., & Donnelly, A.E. (2014). Tissue viability imaging of skin microcirculation following exposure to whole body cryotherapy (-110°C) and cold water immersion (8°C).
  10. Davis, H. L., Alabed, S., & Chico, T. J. A. (2020). Effect of sports massage on performance and recovery: a systematic review and meta-analysis. BMJ open sport & exercise medicine, 6(1), e000614. https://doi.org/10.1136/bmjsem-2019-000614
  11. Guo, J., Li, L., Gong, Y., Zhu, R., Xu, J., Zou, J., & Chen, X. (2017). Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis. Frontiers in physiology, 8, 747. https://doi.org/10.3389/fphys.2017.00747
  12. Halson S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports medicine (Auckland, N.Z.), 44 Suppl 2(Suppl 2), S139–S147. https://doi.org/10.1007/s40279-014-0253-z
  13. Hill, J., Howatson, G., van Someren, K., Leeder, J., & Pedlar, C. (2014). Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. British journal of sports medicine, 48(18), 1340–1346. https://doi.org/10.1136/bjsports-2013-092456
  14. Hinds, T., McEwan, I., Perkes, J., Dawson, E., Ball, D., & George, K. (2004). Effects of massage on limb and skin blood flow after quadriceps exercise. Medicine and science in sports and exercise36(8), 1308–1313. https://doi.org/10.1249/01.mss.0000135789.47716.db
  15. Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and External Training Load: 15 Years On. International journal of sports physiology and performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935
  16. Kellmann, M. & Kallus, K.W. (2000). Der Erholungs-Belastungs-Fragebogen für Sportler; Manual. Frankfurt: Swets Test Services.
  17. Lovell, R., & Abt, G. (2013). Individualization of time-motion analysis: a case-cohort example. International journal of sports physiology and performance, 8(4), 456–458. https://doi.org/10.1123/ijspp.8.4.456
  18. Kim, K., Monroe, J. C., Gavin, T. P., & Roseguini, B. T. (2020). Local Heat Therapy to Accelerate Recovery After Exercise-Induced Muscle Damage. Exercise and sport sciences reviews, 48(4), 163–169. https://doi.org/10.1249/JES.0000000000000230
  19. Kraemer, W. J., Bush, J. A., Wickham, R. B., Denegar, C. R., Gómez, A. L., Gotshalk, L. A., Duncan, N. D., Volek, J. S., Putukian, M., & Sebastianelli, W. J. (2001). Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. The Journal of orthopaedic and sports physical therapy, 31(6), 282–290. https://doi.org/10.2519/jospt.2001.31.6.282
  20. Liu, R., Lao, T. T., Kwok, Y. L., Li, Y., & Ying, M. T. (2008). Effects of graduated compression stockings with different pressure profiles on lower-limb venous structures and haemodynamics. Advances in therapy, 25(5), 465–478. https://doi.org/10.1007/s12325-008-0058-2
  21. Ma, J., Chen, H., Liu, X., Zhang, L., & Qiao, D. (2018). Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity. Frontiers in cellular neuroscience, 12, 14. https://doi.org/10.3389/fncel.2018.00014
  22. Malta, E. S., Dutra, Y. M., Broatch, J. R., Bishop, D. J., & Zagatto, A. M. (2021). The Effects of Regular Cold-Water Immersion Use on Training-Induced Changes in Strength and Endurance Performance: A Systematic Review with Meta-Analysis. Sports medicine (Auckland, N.Z.), 51(1), 161–174. https://doi.org/10.1007/s40279-020-01362-0
  23. Marqués-Jiménez, D., Calleja-González, J., Arratibel, I., Delextrat, A., & Terrados, N. (2016). Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiology & behavior, 153, 133–148. https://doi.org/10.1016/j.physbeh.2015.10.027
  24. McNair, D., Lorr, M., & Doppleman, L. (1971). POMS Manual for the Profile of Mood States. San Diego, CA: Educational and Industrial Testing Service.
  25. Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., Urhausen, A., European College of Sport Science, & American College of Sports Medicine (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Medicine and science in sports and exercise, 45(1), 186–205. https://doi.org/10.1249/MSS.0b013e318279a10a
  26. Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., & Piacentini, M. F. (2006). Central fatigue: the serotonin hypothesis and beyond. Sports medicine (Auckland, N.Z.), 36(10), 881–909. https://doi.org/10.2165/00007256-200636100-00006
  27. Moore, E., Fuller, J. T., Buckley, J. D., Saunders, S., Halson, S. L., Broatch, J. R., & Bellenger, C. R. (2022). Impact of Cold-Water Immersion Compared with Passive Recovery Following a Single Bout of Strenuous Exercise on Athletic Performance in Physically Active Participants: A Systematic Review with Meta-analysis and Meta-regression. Sports medicine (Auckland, N.Z.), 52(7), 1667–1688. https://doi.org/10.1007/s40279-022-01644-9
  28. Morgan, W. P., Brown, D. R., Raglin, J. S., O'Connor, P. J., & Ellickson, K. A. (1987). Psychological monitoring of overtraining and staleness. British journal of sports medicine, 21(3), 107–114. https://doi.org/10.1136/bjsm.21.3.107
  29. Mueller, M.J., & Maluf, K.S. (2002). Tissue adaptation to physical stress: a proposed "Physical Stress Theory" to guide physical therapist practice, education, and research. Physical therapy, 82 4, 383-403 .
  30. Nédélec, M., McCall, A., Carling, C., Legall, F., Berthoin, S., & Dupont, G. (2013). Recovery in soccer : part ii-recovery strategies. Sports medicine (Auckland, N.Z.), 43(1), 9–22. https://doi.org/10.1007/s40279-012-0002-0
  31. Négyesi, J., Hortobágyi, T., Hill, J., Granacher, U., & Nagatomi, R. (2022). Can Compression Garments Reduce the Deleterious Effects of Physical Exercise on Muscle Strength? A Systematic Review and Meta-Analyses. Sports medicine (Auckland, N.Z.), 52(9), 2159–2175. https://doi.org/10.1007/s40279-022-01681-4
  32. Petersen, A. C., & Fyfe, J. J. (2021). Post-exercise Cold Water Immersion Effects on Physiological Adaptations to Resistance Training and the Underlying Mechanisms in Skeletal Muscle: A Narrative Review. Frontiers in sports and active living, 3, 660291. https://doi.org/10.3389/fspor.2021.660291
  33. Petrowski, K., Albani, C., Zenger, M., Brähler, E., & Schmalbach, B. (2021). Revised Short Screening Version of the Profile of Mood States (POMS) From the German General Population. Frontiers in psychology, 12, 631668. https://doi.org/10.3389/fpsyg.2021.631668
  34. Poppendieck, W., Wegmann, M., Ferrauti, A., Kellmann, M., Pfeiffer, M., & Meyer, T. (2016). Massage and Performance Recovery: A Meta-Analytical Review. Sports medicine (Auckland, N.Z.), 46(2), 183–204. https://doi.org/10.1007/s40279-015-0420-x
  35. Raeder, C., Wiewelhove, T., Westphal-Martinez, M. P., Fernandez-Fernandez, J., de Paula Simola, R. A., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2016). Neuromuscular Fatigue and Physiological Responses After Five Dynamic Squat Exercise Protocols. Journal of strength and conditioning research, 30(4), 953–965. https://doi.org/10.1519/JSC.0000000000001181
  36. Scoon, G. S., Hopkins, W. G., Mayhew, S., & Cotter, J. D. (2007). Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. Journal of science and medicine in sport, 10(4), 259–262. https://doi.org/10.1016/j.jsams.2006.06.009
  37. Sellwood, K. L., Brukner, P., Williams, D., Nicol, A., & Hinman, R. (2007). Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. British journal of sports medicine, 41(6), 392–397. https://doi.org/10.1136/bjsm.2006.033985
  38. Shoemaker, J. K., Tiidus, P. M., & Mader, R. (1997). Failure of manual massage to alter limb blood flow: measures by Doppler ultrasound. Medicine and science in sports and exercise29(5), 610–614. https://doi.org/10.1097/00005768-199705000-00004
  39. Skorski, S., Schimpchen, J., Pfeiffer, M., Ferrauti, A., Kellmann, M., & Meyer, T. (2019). Effects of Postexercise Sauna Bathing on Recovery of Swim Performance. International journal of sports physiology and performance, 1–7. Advance online publication. https://doi.org/10.1123/ijspp.2019-0333
  40. Sutkowy, P., Woźniak, A., Boraczyński, T., Mila-Kierzenkowska, C., & Boraczyński, M. (2014). The effect of a single Finnish sauna bath after aerobic exercise on the oxidative status in healthy men. Scandinavian journal of clinical and laboratory investigation, 74(2), 89–94. https://doi.org/10.3109/00365513.2013.860616
  41. Twist, C., & Highton, J. (2013). Monitoring fatigue and recovery in rugby league players. International journal of sports physiology and performance, 8(5), 467–474. https://doi.org/10.1123/ijspp.8.5.467
  42. Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European journal of applied physiology, 102(4), 447–455. https://doi.org/10.1007/s00421-007-0605-6
  43. Verschueren, J., Tassignon, B., De Pauw, K., Proost, M., Teugels, A., Van Cutsem, J., Roelands, B., Verhagen, E., & Meeusen, R. (2020). Does Acute Fatigue Negatively Affect Intrinsic Risk Factors of the Lower Extremity Injury Risk Profile? A Systematic and Critical Review. Sports medicine (Auckland, N.Z.), 50(4), 767–784. https://doi.org/10.1007/s40279-019-01235-1
  44. Wang, Y., Li, S., Zhang, Y., Chen, Y., Yan, F., Han, L., & Ma, Y. (2021). Heat and cold therapy reduce pain in patients with delayed onset muscle soreness: A systematic review and meta-analysis of 32 randomized controlled trials. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 48, 177–187. https://doi.org/10.1016/j.ptsp.2021.01.004
  45. Wang, Y., Lu, H., Li, S., Zhang, Y., Yan, F., Huang, Y., Chen, X., Yang, A., Han, L., & Ma, Y. (2022). Effect of cold and heat therapies on pain relief in patients with delayed onset muscle soreness: A network meta-analysis. Journal of rehabilitation medicine, 54, jrm00258. https://doi.org/10.2340/jrm.v53.331
  46. Weerapong, P., Hume, P. A., & Kolt, G. S. (2005). The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports medicine (Auckland, N.Z.), 35(3), 235–256. https://doi.org/10.2165/00007256-200535030-00004
  47. Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion: a method for sport recovery?. Sports medicine (Auckland, N.Z.), 36(9), 747–765. https://doi.org/10.2165/00007256-200636090-00003
  48. Wiltshire, E. V., Poitras, V., Pak, M., Hong, T., Rayner, J., & Tschakovsky, M. E. (2010). Massage impairs postexercise muscle blood flow and “lactic acid” removal. Medicine and science in sports and exercise42(6), 1062–1071. https://doi.org/10.1249/MSS.0b013e3181c9214f

Beitrag 5:

  1. Al Attar, W. S. A., Khaledi, E. H., Bakhsh, J. M., Faude, O., Ghulam, H., & Sanders, R. H. (2022). Injury prevention programs that include balance training exercises reduce ankle injury rates among soccer players: a systematic review. Journal of physiotherapy, 68(3), 165–173. https://doi.org/10.1016/j.jphys.2022.05.019
  2. Aman, J. E., Elangovan, N., Yeh, I. L., & Konczak, J. (2015). The effectiveness of proprioceptive training for improving motor function: a systematic review. Frontiers in human neuroscience, 8, 1075. https://doi.org/10.3389/fnhum.2014.01075
  3. Amedi, A., Merabet, L. B., Bermpohl, F., & Pascual-Leone, A. (2005). The Occipital Cortex in the Blind: Lessons About Plasticity and Vision. Current Directions in Psychological Science, 14(6), 306–311. https://doi.org/10.1111/j.0963-7214.2005.00387.x
  4. Behm, D. G., & Anderson, K. G. (2006). The role of instability with resistance training. Journal of strength and conditioning research, 20(3), 716–722. https://doi.org/10.1519/R-18475.1
  5. Behm, D. G., Anderson, K., & Curnew, R. S. (2002). Muscle force and activation under stable and unstable conditions. Journal of strength and conditioning research, 16(3), 416–422.
  6. Behm, D., & Colado, J. C. (2012). The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. International journal of sports physical therapy, 7(2), 226–241.
  7. Behm, D. G., Colado, J. C., & Colado, J. C. (2013). Instability resistance training across the exercise continuum. Sports health, 5(6), 500–503. https://doi.org/10.1177/1941738113477815
  8. Behm, D. G., Muehlbauer, T., Kibele, A., & Granacher, U. (2015). Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis. Sports medicine (Auckland, N.Z.), 45(12), 1645–1669. https://doi.org/10.1007/s40279-015-0384-x
  9. Berg, K. O., Wood-Dauphinee, S. L., Williams, J. I., & Maki, B. (1992). Measuring balance in the elderly: validation of an instrument. Canadian journal of public health = Revue canadienne de sante publique, 83 Suppl 2, S7–S11.
  10. Berger, L., & Bernard-Demanze, L. (2011). Age-related effects of a memorizing spatial task in the adults and elderly postural control. Gait & posture, 33(2), 300–302. https://doi.org/10.1016/j.gaitpost.2010.10.082
  11. Bernier, J. N., & Perrin, D. H. (1998). Effect of coordination training on proprioception of the functionally unstable ankle. The Journal of orthopaedic and sports physical therapy, 27(4), 264–275. https://doi.org/10.2519/jospt.1998.27.4.264
  12. Blodgett, J. M., Ventre, J. P., Mills, R., Hardy, R., & Cooper, R. (2022). A systematic review of one-legged balance performance and falls risk in community-dwelling adults. Ageing research reviews, 73, 101501. https://doi.org/10.1016/j.arr.2021.101501
  13. Brachman, A., Kamieniarz, A., Michalska, J., Pawłowski, M., Słomka, K. J., & Juras, G. (2017). Balance Training Programs in Athletes - a Systematic Review. Journal of human kinetics, 58, 45–64. https://doi.org/10.1515/hukin-2017-0088
  14. Bruhn, S., Kullmann, N., & Gollhofer, A. (2004). The effects of a sensorimotor training and a strength training on postural stabilisation, maximum isometric contraction and jump performance. International journal of sports medicine, 25(1), 56–60. https://doi.org/10.1055/s-2003-45228
  15. Brunner, R., Friesenbichler, B., Casartelli, N. C., Bizzini, M., Maffiuletti, N. A., & Niedermann, K. (2019). Effectiveness of multicomponent lower extremity injury prevention programmes in team-sport athletes: an umbrella review. British journal of sports medicine, 53(5), 282–288. https://doi.org/10.1136/bjsports-2017-098944
  16. Burcal, C. J., Needle, A. R., Custer, L., & Rosen, A. B. (2019). The Effects of Cognitive Loading on Motor Behavior in Injured Individuals: A Systematic Review. Sports medicine (Auckland, N.Z.), 49(8), 1233–1253. https://doi.org/10.1007/s40279-019-01116-7
  17. Collings, T. J., Bourne, M. N., Barrett, R. S., du Moulin, W., Hickey, J. T., & Diamond, L. E. (2021). Risk Factors for Lower Limb Injury in Female Team Field and Court Sports: A Systematic Review, Meta-analysis, and Best Evidence Synthesis. Sports medicine (Auckland, N.Z.), 51(4), 759–776. https://doi.org/10.1007/s40279-020-01410-9
  18. Cressey, E. M., West, C. A., Tiberio, D. P., Kraemer, W. J., & Maresh, C. M. (2007). The effects of ten weeks of lower-body unstable surface training on markers of athletic performance. Journal of strength and conditioning research, 21(2), 561–567. https://doi.org/10.1519/R-19845.1
  19. Crossley, K. M., Patterson, B. E., Culvenor, A. G., Bruder, A. M., Mosler, A. B., & Mentiplay, B. F. (2020). Making football safer for women: a systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. British journal of sports medicine, 54(18), 1089–1098. https://doi.org/10.1136/bjsports-2019-101587
  20. Doherty, C., Bleakley, C., Delahunt, E., & Holden, S. (2017). Treatment and prevention of acute and recurrent ankle sprain: an overview of systematic reviews with meta-analysis. British journal of sports medicine, 51(2), 113–125. https://doi.org/10.1136/bjsports-2016-096178
  21. Doma, K., Grant, A., & Morris, J. (2018). The Effects of Balance Training on Balance Performance and Functional Outcome Measures Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 48(10), 2367–2385. https://doi.org/10.1007/s40279-018-0964-7
  22. Donath, L., Roth, R., Zahner, L., & Faude, O. (2017). Slackline Training (Balancing Over Narrow Nylon Ribbons) and Balance Performance: A Meta-Analytical Review. Sports medicine (Auckland, N.Z.), 47(6), 1075–1086. https://doi.org/10.1007/s40279-016-0631-9
  23. Fonseca, S. T., Souza, T. R., Verhagen, E., van Emmerik, R., Bittencourt, N. F. N., Mendonça, L. D. M., Andrade, A. G. P., Resende, R. A., & Ocarino, J. M. (2020). Sports Injury Forecasting and Complexity: A Synergetic Approach. Sports medicine (Auckland, N.Z.), 50(10), 1757–1770. https://doi.org/10.1007/s40279-020-01326-4
  24. Franz, J. R., Francis, C. A., Allen, M. S., O'Connor, S. M., & Thelen, D. G. (2015). Advanced age brings a greater reliance on visual feedback to maintain balance during walking. Human movement science, 40, 381–392. https://doi.org/10.1016/j.humov.2015.01.012
  25. Garner, J. C., Allen, C. R., Chander, H., & Knight, A. C. (2023). Applied Biomechanics Laboratory manual. Human Kinetics.
  26. Gebel, A., Lesinski, M., Behm, D. G., & Granacher, U. (2018). Effects and Dose-Response Relationship of Balance Training on Balance Performance in Youth: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 48(9), 2067–2089. https://doi.org/10.1007/s40279-018-0926-0
  27. Gebel, A., Prieske, O., Behm, D.G., & Granacher, U. (2020). Effects of Balance Training on Physical Fitness in Youth and Young Athletes: A Narrative Review. Strength and Conditioning Journal.
  28. Gidu, D. V., Badau, D., Stoica, M., Aron, A., Focan, G., Monea, D., Stoica, A. M., & Calota, N. D. (2022). The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players. International journal of environmental research and public health, 19(4), 2028. https://doi.org/10.3390/ijerph19042028
  29. Gokeler, A., McKeon, P.O., Hoch, M.C. (2020). Shaping the Functional Task Environment in Sports Injury Rehabilitation: A Framework to Integrate Perceptual-Cognitive Training in Rehabilitation. Athlete Training & Sports Health Care,12(6), 283–292. https://doi.org/10.3928/19425864-20201016-01
  30. Granacher, U., & Behm, D. G. (2023). Relevance and Effectiveness of Combined Resistance and Balance Training to Improve Balance and Muscular Fitness in Healthy Youth and Youth Athletes: A Scoping Review. Sports medicine (Auckland, N.Z.), 53(2), 349–370. https://doi.org/10.1007/s40279-022-01789-7
  31. Granacher, U., Gollhofer, A., & Kriemler, S. (2010). Effects of balance training on postural sway, leg extensor strength, and jumping height in adolescents. Research quarterly for exercise and sport, 81(3), 245–251. https://doi.org/10.1080/02701367.2010.10599672
  32. Hammami, R., Granacher, U., Makhlouf, I., Behm, D. G., & Chaouachi, A. (2016). Sequencing Effects of Balance and Plyometric Training on Physical Performance in Youth Soccer Athletes. Journal of strength and conditioning research, 30(12), 3278–3289. https://doi.org/10.1519/JSC.0000000000001425
  33. Hazime, F. A., Allard, P., Ide, M. R., Siqueira, C. M., Amorim, C. F., & Tanaka, C. (2012). Postural control under visual and proprioceptive perturbations during double and single limb stances: insights for balance training. Journal of bodywork and movement therapies, 16(2), 224–229. https://doi.org/10.1016/j.jbmt.2011.02.003
  34. Heitkamp, H. C., Horstmann, T., Mayer, F., Weller, J., & Dickhuth, H. H. (2001). Gain in strength and muscular balance after balance training. International journal of sports medicine, 22(4), 285–290. https://doi.org/10.1055/s-2001-13819
  35. Henry, M., & Baudry, S. (2019). Age-related changes in leg proprioception: implications for postural control. Journal of neurophysiology, 122(2), 525–538. https://doi.org/10.1152/jn.00067.2019
  36. Holm, I., Fosdahl, M. A., Friis, A., Risberg, M. A., Myklebust, G., & Steen, H. (2004). Effect of neuromuscular training on proprioception, balance, muscle strength, and lower limb function in female team handball players. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine, 14(2), 88–94. https://doi.org/10.1097/00042752-200403000-00006
  37. Hrysomallis C. (2011). Balance ability and athletic performance. Sports medicine (Auckland, N.Z.), 41(3), 221–232. https://doi.org/10.2165/11538560-000000000-00000
  38. Ivanenko, Y. P., Talis, V. L., & Kazennikov, O. V. (1999). Support stability influences postural responses to muscle vibration in humans. The European journal of neuroscience, 11(2), 647–654. https://doi.org/10.1046/j.1460-9568.1999.00471.x
  39. Jehu, D. A., Davis, J. C., Falck, R. S., Bennett, K. J., Tai, D., Souza, M. F., Cavalcante, B. R., Zhao, M., & Liu-Ambrose, T. (2021). Risk factors for recurrent falls in older adults: A systematic review with meta-analysis. Maturitas, 144, 23–28. https://doi.org/10.1016/j.maturitas.2020.10.021
  40. Jeka, J. J., Allison, L. K., & Kiemel, T. (2010). The dynamics of visual reweighting in healthy and fall-prone older adults. Journal of motor behavior, 42(4), 197–208. https://doi.org/10.1080/00222895.2010.481693
  41. Kean, C. O., Behm, D. G., & Young, W. B. (2006). Fixed foot balance training increases rectus femoris activation during landing and jump height in recreationally active women. Journal of sports science & medicine, 5(1), 138–148.
  42. Kim, K., Cha, Y. J., & Fell, D. W. (2011). The effect of contralateral training: Influence of unilateral isokinetic exercise on one-legged standing balance of the contralateral lower extremity in adults. Gait & posture, 34(1), 103–106. https://doi.org/10.1016/j.gaitpost.2011.03.022
  43. Kümmel, J., Kramer, A., Giboin, L. S., & Gruber, M. (2016). Specificity of Balance Training in Healthy Individuals: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 46(9), 1261–1271. https://doi.org/10.1007/s40279-016-0515-z
  44. Lawry-Popelka, B., Chung, S., & McCann, R. S. (2022). Cross-Education Balance Effects After Unilateral Rehabilitation in Individuals With Chronic Ankle Instability: A Systematic Review. Journal of athletic training, 57(11-12), 1055–1061. https://doi.org/10.4085/1062-6050-625-21
  45. Lehmann, T., Paschen, L., & Baumeister, J. (2017). Single-Leg Assessment of Postural Stability After Anterior Cruciate Ligament Injury: a Systematic Review and Meta-Analysis. Sports medicine - open, 3(1), 32. https://doi.org/10.1186/s40798-017-0100-5
  46. Lemes, I. R., Pinto, R. Z., Lage, V. N., Roch, B. A. B., Verhagen, E., Bolling, C., Aquino, C. F., Fonseca, S. T., & Souza, T. R. (2021). Do exercise-based prevention programmes reduce non-contact musculoskeletal injuries in football (soccer)? A systematic review and meta-analysis with 13 355 athletes and more than 1 million exposure hours. British journal of sports medicine, 55(20), 1170–1178. https://doi.org/10.1136/bjsports-2020-103683
  47. Lesinski, M., Hortobágyi, T., Muehlbauer, T., Gollhofer, A., & Granacher, U. (2015a). Dose-response relationships of balance training in healthy young adults: a systematic review and meta-analysis. Sports medicine (Auckland, N.Z.), 45(4), 557–576. https://doi.org/10.1007/s40279-014-0284-5
  48. Lesinski, M., Hortobágyi, T., Muehlbauer, T., Gollhofer, A., & Granacher, U. (2015b). Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports medicine (Auckland, N.Z.), 45(12), 1721–1738. https://doi.org/10.1007/s40279-015-0375-y
  49. Lubetzky-Vilnai, A., & Kartin, D. (2010). The effect of balance training on balance performance in individuals poststroke: a systematic review. Journal of neurologic physical therapy : JNPT, 34(3), 127–137. https://doi.org/10.1097/NPT.0b013e3181ef764d
  50. Lubetzky-Vilnai, A., McCoy, S. W., Price, R., & Ciol, M. A. (2015). Young Adults Largely Depend on Vision for Postural Control When Standing on a BOSU Ball but Not on Foam. Journal of strength and conditioning research, 29(10), 2907–2918. https://doi.org/10.1519/JSC.0000000000000935
  51. Lusardi, M. M., Fritz, S., Middleton, A., Allison, L., Wingood, M., Phillips, E., Criss, M., Verma, S., Osborne, J., & Chui, K. K. (2017). Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. Journal of geriatric physical therapy (2001), 40(1), 1–36. https://doi.org/10.1519/JPT.0000000000000099
  52. Malliou, P., Amoutzas, K., Theodosiou, A., Gioftsidou, A., Mantis, K., Pylianidis, T., & Kioumourtzoglou, E. (2004). Proprioceptive training for learning downhill skiing. Perceptual and motor skills, 99(1), 149–154. https://doi.org/10.2466/pms.99.1.149-154
  53. Marotta, N., Moggio, L., Calafiore, D., Prestifilippo, E., Spanó, R., Tasselli, A., Drago Ferrante, V., Invernizzi, M., de Sire, A., & Ammendolia, A. (2023). Efficacy of Proprioceptive Training on Plantar Pressure and Jump Performance in Volleyball Players: A Proof-of-Principle Study. Sensors (Basel, Switzerland), 23(4), 1906. https://doi.org/10.3390/s23041906
  54. Mattu, A. T., Ghali, B., Linton, V., Zheng, A., & Pike, I. (2022). Prevention of Non-Contact Anterior Cruciate Ligament Injuries among Youth Female Athletes: An Umbrella Review. International journal of environmental research and public health, 19(8), 4648. https://doi.org/10.3390/ijerph19084648
  55. McCaskey, M. A., Wirth, B., Schuster-Amft, C., & de Bruin, E. D. (2018). Postural sensorimotor training versus sham exercise in physiotherapy of patients with chronic non-specific low back pain: An exploratory randomised controlled trial. PloS one, 13(3), e0193358. https://doi.org/10.1371/journal.pone.0193358
  56. McKeon, P.O. (2009). Cultivating Functional Variability: The Dynamical-Systems Approach to Rehabilitation. Athletic Therapy Today, 14, 1-3.
  57. McKeon, P. O., & Hertel, J. (2008). Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective?. Journal of athletic training, 43(3), 305–315. https://doi.org/10.4085/1062-6050-43.3.305
  58. Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakopoulos, E. T., Pitskel, N. B., Kauffman, T., & Pascual-Leone, A. (2008). Rapid and reversible recruitment of early visual cortex for touch. PloS one, 3(8), e3046. https://doi.org/10.1371/journal.pone.0003046
  59. Mohammadi-Rad, S., Salavati, M., Ebrahimi-Takamjani, I., Akhbari, B., Sherafat, S., Negahban, H., Lali, P., & Mazaheri, M. (2016). Dual-Tasking Effects on Dynamic Postural Stability in Athletes With and Without Anterior Cruciate Ligament Reconstruction. Journal of sport rehabilitation, 25(4), 324–329. https://doi.org/10.1123/jsr.2015-0012
  60. Mollà-Casanova, S., Inglés, M., & Serra-Añó, P. (2021). Effects of balance training on functionality, ankle instability, and dynamic balance outcomes in people with chronic ankle instability: Systematic review and meta-analysis. Clinical rehabilitation, 35(12), 1694–1709. https://doi.org/10.1177/02692155211022009
  61. Munn, J., Sullivan, S. J., & Schneiders, A. G. (2010). Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. Journal of science and medicine in sport, 13(1), 2–12. https://doi.org/10.1016/j.jsams.2009.03.004
  62. Negahban, H., Ahmadi, P., Salehi, R., Mehravar, M., & Goharpey, S. (2013). Attentional demands of postural control during single leg stance in patients with anterior cruciate ligament reconstruction. Neuroscience letters, 556, 118–123. https://doi.org/10.1016/j.neulet.2013.10.022
  63. Neto, T., Sayer, T., Theisen, D., & Mierau, A. (2019). Functional Brain Plasticity Associated with ACL Injury: A Scoping Review of Current Evidence. Neural plasticity, 2019, 3480512. https://doi.org/10.1155/2019/3480512
  64. Nightingale, C. J., Mitchell, S. N., & Butterfield, S. A. (2019). Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. Journal of aging and physical activity, 27(2), 230–233. https://doi.org/10.1123/japa.2018-0049
  65. Obërtinca, R., Hoxha, I., Meha, R., Lama, A., Bimbashi, A., Kuqi, D., Shabani, B., Meyer, T., & der Fünten, K. A. (2023). Efficacy of Multi-Component Exercise-Based Injury Prevention Programs on Injury Risk Among Footballers of All Age Groups: A Systematic Review and Meta-analysis. Sports medicine (Auckland, N.Z.), 53(4), 837–848. https://doi.org/10.1007/s40279-022-01797-7
  66. Oliveira, A. S., Brito Silva, P., Farina, D., & Kersting, U. G. (2013). Unilateral balance training enhances neuromuscular reactions to perturbations in the trained and contralateral limb. Gait & posture, 38(4), 894–899. https://doi.org/10.1016/j.gaitpost.2013.04.015
  67. Parreira, R. B., Grecco, L. A. C., & Oliveira, C. S. (2017). Postural control in blind individuals: A systematic review. Gait & posture, 57, 161–167. https://doi.org/10.1016/j.gaitpost.2017.06.008
  68. Peer, M. A., & Gleeson, N. (2018). Effects of a Short-Term Conditioning Intervention on Knee Flexor Sensorimotor and Neuromuscular Performance in Men. Journal of sport rehabilitation, 27(1), 37–46. https://doi.org/10.1123/jsr.2016-0012
  69. Piskin, D., Benjaminse, A., Dimitrakis, P., & Gokeler, A. (2022). Neurocognitive and Neurophysiological Functions Related to ACL Injury: A Framework for Neurocognitive Approaches in Rehabilitation and Return-to-Sports Tests. Sports health, 14(4), 549–555. https://doi.org/10.1177/19417381211029265
  70. Riemann, B. L., & Lephart, S. M. (2002). The sensorimotor system, part I: the physiologic basis of functional joint stability. Journal of athletic training, 37(1), 71–79.
  71. Riemann, B. L., Tray, N. C., & Lephart, S. M. (2003). Unilateral Multiaxial Coordination Training and Ankle Kinesthesia, Muscle Strength, and Postural Control, Journal of Sport Rehabilitation, 12(1), 13-30. Retrieved Jul 4, 2023, from https://doi.org/10.1123/jsr.12.1.13
  72. Risberg, M. A., Mørk, M., Jenssen, H. K., & Holm, I. (2001). Design and implementation of a neuromuscular training program following anterior cruciate ligament reconstruction. The Journal of orthopaedic and sports physical therapy, 31(11), 620–631. https://doi.org/10.2519/jospt.2001.31.11.620
  73. Rubenstein L. Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age and ageing, 35 Suppl 2, ii37–ii41. https://doi.org/10.1093/ageing/afl084
  74. Sadoghi, P., von Keudell, A., & Vavken, P. (2012). Effectiveness of anterior cruciate ligament injury prevention training programs. The Journal of bone and joint surgery. American volume, 94(9), 769–776. https://doi.org/10.2106/JBJS.K.00467
  75. Saftari, L. N., & Kwon, O. S. (2018). Ageing vision and falls: a review. Journal of physiological anthropology37(1), 11. https://doi.org/10.1186/s40101-018-0170-1
  76. Sherrington, C., Fairhall, N., Kwok, W., Wallbank, G., Tiedemann, A., Michaleff, Z. A., Ng, C. A. C. M., & Bauman, A. (2020). Evidence on physical activity and falls prevention for people aged 65+ years: systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. The international journal of behavioral nutrition and physical activity, 17(1), 144. https://doi.org/10.1186/s12966-020-01041-3
  77. Sherrington, C., Michaleff, Z. A., Fairhall, N., Paul, S. S., Tiedemann, A., Whitney, J., Cumming, R. G., Herbert, R. D., Close, J. C. T., & Lord, S. R. (2017). Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. British journal of sports medicine, 51(24), 1750–1758. https://doi.org/10.1136/bjsports-2016-096547
  78. Šimek, S., Milanovic, D.V., & Jukić, I. (2007). The effects of proprioceptive training on jumping and agility performance. Kinesiology, 39, 131-141.
  79. Sohn, J., & Kim, S. (2015). Falls study: Proprioception, postural stability, and slips. Bio-medical materials and engineering, 26 Suppl 1, S693–S703. https://doi.org/10.3233/BME-151361
  80. Song, K., Burcal, C. J., Hertel, J., & Wikstrom, E. A. (2016). Increased Visual Use in Chronic Ankle Instability: A Meta-analysis. Medicine and science in sports and exercise, 48(10), 2046–2056. https://doi.org/10.1249/MSS.0000000000000992
  81. Song, K., Rhodes, E., & Wikstrom, E. A. (2018). Balance Training Does Not Alter Reliance on Visual Information during Static Stance in Those with Chronic Ankle Instability: A Systematic Review with Meta-Analysis. Sports medicine (Auckland, N.Z.), 48(4), 893–905. https://doi.org/10.1007/s40279-017-0850-8
  82. Taube, W., Gruber, M., & Gollhofer, A. (2008). Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta physiologica (Oxford, England), 193(2), 101–116. https://doi.org/10.1111/j.1748-1716.2008.01850.x
  83. Tavakoli, S., Forghany, S., & Nester, C. (2016). The effect of dual tasking on foot kinematics in people with functional ankle instability. Gait & posture, 49, 364–370. https://doi.org/10.1016/j.gaitpost.2016.07.302
  84. Taylor, J. B., Waxman, J. P., Richter, S. J., & Shultz, S. J. (2015). Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. British journal of sports medicine, 49(2), 79–87. https://doi.org/10.1136/bjsports-2013-092358
  85. Wikstrom, E. A., Hubbard-Turner, T., & McKeon, P. O. (2013). Understanding and treating lateral ankle sprains and their consequences: a constraints-based approach. Sports medicine (Auckland, N.Z.), 43(6), 385–393. https://doi.org/10.1007/s40279-013-0043-z
  86. Wikstrom, E. A., Naik, S., Lodha, N., & Cauraugh, J. H. (2009). Balance capabilities after lateral ankle trauma and intervention: a meta-analysis. Medicine and science in sports and exercise, 41(6), 1287–1295. https://doi.org/10.1249/MSS.0b013e318196cbc6
  87. Winter, L., Huang, Q., Sertic, J. V. L., & Konczak, J. (2022). The Effectiveness of Proprioceptive Training for Improving Motor Performance and Motor Dysfunction: A Systematic Review. Frontiers in rehabilitation sciences, 3, 830166. https://doi.org/10.3389/fresc.2022.830166
  88. Yaggie, J. A., & Campbell, B. M. (2006). Effects of balance training on selected skills. Journal of strength and conditioning research, 20(2), 422–428. https://doi.org/10.1519/R-17294.1
  89. Zech, A., Hübscher, M., Vogt, L., Banzer, W., Hänsel, F., & Pfeifer, K. (2010). Balance training for neuromuscular control and performance enhancement: a systematic review. Journal of athletic training, 45(4), 392–403. https://doi.org/10.4085/1062-6050-45.4.392
  90. Zemková, E., Jeleň, M., Cepková, A., & Uváček, M. (2021). There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Applied Sciences, 11, 3401.
  91. Zemková, E., & Kováčiková, Z. (2023). Sport-specific training induced adaptations in postural control and their relationship with athletic performance. Frontiers in human neuroscience, 16, 1007804. https://doi.org/10.3389/fnhum.2022.1007804
  92. Zheng, J., Pan, Y., Hua, Y., Shen, H., Wang, X., Zhang, Y., Fan, Y., & Yu, Z. (2013). Strategic targeted exercise for preventing falls in elderly people. The Journal of international medical research, 41(2), 418–426. https://doi.org/10.1177/0300060513477297

Beitrag 6:

  1. Aasa, U., Bengtsson, V., Berglund, L., & Öhberg, F. (2022). Variability of lumbar spinal alignment among power- and weightlifters during the deadlift and barbell back squat. Sports biomechanics, 21(6), 701–717. https://doi.org/10.1080/14763141.2019.1675751
  2. Aasa, U., Svartholm, I., Andersson, F., & Berglund, L. (2017). Injuries among weightlifters and powerlifters: a systematic review. British journal of sports medicine, 51(4), 211–219. https://doi.org/10.1136/bjsports-2016-096037
  3. Adams, M. A., Hutton, W. C., & Stott, J. R. (1980). The resistance to flexion of the lumbar intervertebral joint. Spine, 5(3), 245–253. https://doi.org/10.1097/00007632-198005000-00007
  4. Adams, M. A., McNally, D. S., Chinn, H., & Dolan, P. (1994). The clinical biomechanics award paper 1993 Posture and the compressive strength of the lumbar spine. Clinical biomechanics (Bristol, Avon), 9(1), 5–14. https://doi.org/10.1016/0268-0033(94)90052-3
  5. Almstedt, H. C., Canepa, J. A., Ramirez, D. A., & Shoepe, T. C. (2011). Changes in bone mineral density in response to 24 weeks of resistance training in college-age men and women. Journal of strength and conditioning research, 25(4), 1098–1103. https://doi.org/10.1519/JSC.0b013e3181d09e9d
  6. Arjmand, N., & Shirazi-Adl, A. (2005). Biomechanics of changes in lumbar posture in static lifting. Spine, 30(23), 2637–2648. https://doi.org/10.1097/01.brs.0000187907.02910.4f
  7. Bahr, R., Andersen, S. O., Løken, S., Fossan, B., Hansen, T., & Holme, I. (2004). Low back pain among endurance athletes with and without specific back loading--a cross-sectional survey of cross-country skiers, rowers, orienteerers, and nonathletic controls. Spine, 29(4), 449–454. https://doi.org/10.1097/01.brs.0000096176.92881.37
  8. Bazrgari, B., Shirazi-Adl, A., & Arjmand, N. (2007). Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 16(5), 687–699. https://doi.org/10.1007/s00586-006-0240-7
  9. Belavý, D. L., Quittner, M. J., Ridgers, N., Ling, Y., Connell, D., & Rantalainen, T. (2017). Running exercise strengthens the intervertebral disc. Scientific reports, 7, 45975. https://doi.org/10.1038/srep45975
  10. Benedetti, F., Lanotte, M., Lopiano, L., & Colloca, L. (2007). When words are painful: unraveling the mechanisms of the nocebo effect. Neuroscience, 147(2), 260–271. https://doi.org/10.1016/j.neuroscience.2007.02.020
  11. Bird, S.P., & Barrington-Higgs, B. (2010). Exploring the Deadlift. Strength and Conditioning Journal, 32, 46-51.
  12. Bolam, K. A., van Uffelen, J. G., & Taaffe, D. R. (2013). The effect of physical exercise on bone density in middle-aged and older men: a systematic review. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 24(11), 2749–2762. https://doi.org/10.1007/s00198-013-2346-1
  13. Brinjikji, W., Luetmer, P. H., Comstock, B., Bresnahan, B. W., Chen, L. E., Deyo, R. A., Halabi, S., Turner, J. A., Avins, A. L., James, K., Wald, J. T., Kallmes, D. F., & Jarvik, J. G. (2015). Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR. American journal of neuroradiology, 36(4), 811–816. https://doi.org/10.3174/ajnr.A4173
  14. Callaghan, J. P., & McGill, S. M. (2001). Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clinical biomechanics (Bristol, Avon), 16(1), 28–37. https://doi.org/10.1016/s0268-0033(00)00063-2
  15. Caneiro, J., O’Sullivan, P., Lipp, O., Mitchinson, L., Oeveraas, N., Bhalvani, P., Abrugiato, R., Thorkildsen, S. & Smith, A. (2018). Evaluation of implicit associations between back posture and safety of bending and lifting in people without pain. Scandinavian Journal of Pain, 18(4), 719-728. https://doi.org/10.1515/sjpain-2018-0056
  16. Chan, S. C., Ferguson, S. J., & Gantenbein-Ritter, B. (2011). The effects of dynamic loading on the intervertebral disc. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 20(11), 1796–1812. https://doi.org/10.1007/s00586-011-1827-1
  17. Chiu, L.Z., & Burkhardt, E. (2011). A Teaching Progression for Squatting Exercises. Strength and Conditioning Journal, 33, 46-54.
  18. Cholewicki, J., & McGill, S. M. (1992). Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements. Journal of biomechanics, 25(1), 17–28. https://doi.org/10.1016/0021-9290(92)90242-s
  19. Coenen, P., Gouttebarge, V., van der Burght, A. S., van Dieën, J. H., Frings-Dresen, M. H., van der Beek, A. J., & Burdorf, A. (2014). The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis. Occupational and environmental medicine, 71(12), 871–877. https://doi.org/10.1136/oemed-2014-102346
  20. Cole, M. H., & Grimshaw, P. N. (2003). Low back pain and lifting: a review of epidemiology and aetiology. Work (Reading, Mass.), 21(2), 173–184.
  21. Conroy, B. P., Kraemer, W. J., Maresh, C. M., Fleck, S. J., Stone, M. H., Fry, A. C., Miller, P. D., & Dalsky, G. P. (1993). Bone mineral density in elite junior Olympic weightlifters. Medicine and science in sports and exercise, 25(10), 1103–1109.
  22. Denis, D., Gonella, M., Comeau, M., & Lauzier, M. (2020). Questioning the value of manual material handling training: a scoping and critical literature review. Applied ergonomics, 89, 103186. https://doi.org/10.1016/j.apergo.2020.103186
  23. Dolan, P., Mannion, A. F., & Adams, M. A. (1994). Passive tissues help the back muscles to generate extensor moments during lifting. Journal of biomechanics, 27(8), 1077–1085. https://doi.org/10.1016/0021-9290(94)90224-0
  24. Dreischarf, M., Rohlmann, A., Graichen, F., Bergmann, G., & Schmidt, H. (2016). In vivo loads on a vertebral body replacement during different lifting techniques. Journal of biomechanics, 49(6), 890–895. https://doi.org/10.1016/j.jbiomech.2015.09.034
  25. Edington, C. (2017). Lumbar spine kinematics and kinetics during heavy barbell squat and deadlift variations.
  26. Edington, C., Greening, C., Kmet, N., Philipenko, N., Purves, L., Stevens, J., Lanovaz, J., & Butcher, S. (2018). The Effect of Set Up Position on EMG Amplitude, Lumbar Spine Kinetics, and Total Force Output During Maximal Isometric Conventional-Stance Deadlifts. Sports (Basel, Switzerland), 6(3), 90. https://doi.org/10.3390/sports6030090
  27. Foss, I. S., Holme, I., & Bahr, R. (2012). The prevalence of low back pain among former elite cross-country skiers, rowers, orienteerers, and nonathletes: a 10-year cohort study. The American journal of sports medicine, 40(11), 2610–2616. https://doi.org/10.1177/0363546512458413
  28. Gallagher, S., & Marras, W. S. (2012). Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clinical biomechanics (Bristol, Avon), 27(10), 973–978. https://doi.org/10.1016/j.clinbiomech.2012.08.009
  29. Gallagher, S., Marras, W. S., Litsky, A. S., & Burr, D. (2005). Torso flexion loads and the fatigue failure of human lumbosacral motion segments. Spine, 30(20), 2265–2273. https://doi.org/10.1097/01.brs.0000182086.33984.b3
  30. Gallagher, S., Marras, W. S., Litsky, A. S., & Burr, D. (2006). An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clinical biomechanics (Bristol, Avon), 21(3), 228–234. https://doi.org/10.1016/j.clinbiomech.2005.10.001
  31. Gooyers, C. E., McMillan, E. M., Noguchi, M., Quadrilatero, J., & Callaghan, J. P. (2015). Characterizing the combined effects of force, repetition and posture on injury pathways and micro-structural damage in isolated functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading. Clinical biomechanics (Bristol, Avon), 30(9), 953–959. https://doi.org/10.1016/j.clinbiomech.2015.07.003
  32. Granhed, H., Jonson, R., & Hansson, T. (1987). The loads on the lumbar spine during extreme weight lifting. Spine, 12(2), 146–149. https://doi.org/10.1097/00007632-198703000-00010
  33. Graves, J. E., Pollock, M. L., Carpenter, D. M., Leggett, S. H., Jones, A., MacMillan, M., & Fulton, M. (1990). Quantitative assessment of full range-of-motion isometric lumbar extension strength. Spine, 15(4), 289–294. https://doi.org/10.1097/00007632-199004000-00008
  34. Grosland, N. M., & Goel, V. K. (2007). Vertebral endplate morphology follows bone remodeling principles. Spine, 32(23), E667–E673. https://doi.org/10.1097/BRS.0b013e318158cfaf
  35. Gunning, J. L., Callaghan, J. P., & McGill, S. M. (2001). Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model. Clinical biomechanics (Bristol, Avon), 16(6), 471–480. https://doi.org/10.1016/s0268-0033(01)00032-8
  36. Hales, M.E. (2010). Improving the Deadlift: Understanding Biomechanical Constraints and Physiological Adaptations to Resistance Exercise. Strength and Conditioning Journal, 32, 44-51.
  37. Hales, M. E., Johnson, B. F., & Johnson, J. T. (2009). Kinematic analysis of the powerlifting style squat and the conventional deadlift during competition: is there a cross-over effect between lifts?. Journal of strength and conditioning research, 23(9), 2574–2580. https://doi.org/10.1519/JSC.0b013e3181bc1d2a
  38. Hansson, T. H., Keller, T. S., & Spengler, D. M. (1987). Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 5(4), 479–487. https://doi.org/10.1002/jor.1100050403
  39. Holder, L. (2013). The effect of lumbar posture and pelvis fixation on back extensor torque and paravertebral muscle activation.
  40. Howe, L. & Lehman, G. (2021). Getting out of neutral: the risks and rewards of lumbar spine flexion during lifting exercises. Strength and Conditioning Journal, 60, 19-31.
  41. Khoddam-Khorasani, P., Arjmand, N., & Shirazi-Adl, A. (2020). Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study. Journal of biomechanics, 104, 109728. https://doi.org/10.1016/j.jbiomech.2020.109728
  42. Kingma, I., Bosch, T., Bruins, L., & van Dieën, J. H. (2004). Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Ergonomics, 47(13), 1365–1385. https://doi.org/10.1080/00140130410001714742
  43. Kingma, I., Faber, G. S., & van Dieën, J. H. (2010). How to lift a box that is too large to fit between the knees. Ergonomics, 53(10), 1228–1238. https://doi.org/10.1080/00140139.2010.512983
  44. Kwon, B. K., Roffey, D. M., Bishop, P. B., Dagenais, S., & Wai, E. K. (2011). Systematic review: occupational physical activity and low back pain. Occupational medicine (Oxford, England), 61(8), 541–548. https://doi.org/10.1093/occmed/kqr092
  45. Laird, R. A., Gilbert, J., Kent, P., & Keating, J. L. (2014). Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC musculoskeletal disorders, 15, 229. https://doi.org/10.1186/1471-2474-15-229
  46. Leeuw, M., Goossens, M., Linton, S., Crombez, G., Boersma, K., & Vlaeyen, J. (2006). The Fear-Avoidance Model of Musculoskeletal Pain: Current State of Scientific Evidence. Journal of Behavioral Medicine, 30, 77-94.
  47. Li, S., Jia, X., Duance, V. C., & Blain, E. J. (2011). The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study. European cells & materials, 21, 508–522. https://doi.org/10.22203/ecm.v021a38
  48. Maher, C., Underwood, M., & Buchbinder, R. (2017). Non-specific low back pain. Lancet (London, England), 389(10070), 736–747. https://doi.org/10.1016/S0140-6736(16)30970-9
  49. Martimo, K. P., Verbeek, J., Karppinen, J., Furlan, A. D., Takala, E. P., Kuijer, P. P., Jauhiainen, M., & Viikari-Juntura, E. (2008). Effect of training and lifting equipment for preventing back pain in lifting and handling: systematic review. BMJ (Clinical research ed.), 336(7641), 429–431. https://doi.org/10.1136/bmj.39463.418380.BE
  50. Marques, E. A., Mota, J., & Carvalho, J. (2012). Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordrecht, Netherlands), 34(6), 1493–1515. https://doi.org/10.1007/s11357-011-9311-8
  51. Mawston, G., Holder, L., O'Sullivan, P., & Boocock, M. (2021). Flexed lumbar spine postures are associated with greater strength and efficiency than lordotic postures during a maximal lift in pain-free individuals. Gait & posture, 86, 245–250. https://doi.org/10.1016/j.gaitpost.2021.02.029
  52. McGill, S. M. (2007). Low back disorders: Evidence based prevention and rehabilitation (2nd ed.). Champaign, IL: Human Kinetics.
  53. McGill, S. M., Hughson, R. L., & Parks, K. (2000). Changes in lumbar lordosis modify the role of the extensor muscles. Clinical biomechanics (Bristol, Avon), 15(10), 777–780. https://doi.org/10.1016/s0268-0033(00)00037-1
  54. McGill, S. M., & Marshall, L. W. (2012). Kettlebell swing, snatch, and bottoms-up carry: back and hip muscle activation, motion, and low back loads. Journal of strength and conditioning research, 26(1), 16–27. https://doi.org/10.1519/JSC.0b013e31823a4063
  55. McGill, S. M., & Norman, R. W. (1986). Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine, 11(7), 666–678. https://doi.org/10.1097/00007632-198609000-00004
  56. Mosti, M. P., Carlsen, T., Aas, E., Hoff, J., Stunes, A. K., & Syversen, U. (2014). Maximal strength training improves bone mineral density and neuromuscular performance in young adult women. Journal of strength and conditioning research, 28(10), 2935–2945. https://doi.org/10.1519/JSC.0000000000000493
  57. Németh, G., & Ohlsén, H. (1985). In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. Journal of biomechanics, 18(2), 129–140. https://doi.org/10.1016/0021-9290(85)90005-3
  58. Nolan, D., O'Sullivan, K., Newton, C., Singh, G., & Smith, B. E. (2020). Are there differences in lifting technique between those with and without low back pain? A systematic review. Scandinavian journal of pain, 20(2), 215–227. https://doi.org/10.1515/sjpain-2019-0089
  59. Nolan, D., O'Sullivan, K., Stephenson, J., O'Sullivan, P., & Lucock, M. (2018). What do physiotherapists and manual handling advisors consider the safest lifting posture, and do back beliefs influence their choice?. Musculoskeletal science & practice, 33, 35–40. https://doi.org/10.1016/j.msksp.2017.10.010
  60. Parreira, P., Maher, C. G., Steffens, D., Hancock, M. J. & Ferreira, M. L. (2018). Risk factors for low back pain and sciatica: an umbrella review. The Spine Journal: Official Journal of the North American Spine Society, 18(9), 1715–1721. https://doi.org/10.1016/j.spinee.2018.05.018.
  61. Pinto, B. L., Beaudette, S. M., & Brown, S. H. M. (2018). Tactile cues can change movement: An example using tape to redistribute flexion from the lumbar spine to the hips and knees during lifting. Human movement science, 60, 32–39. https://doi.org/10.1016/j.humov.2018.05.004
  62. Piper T.J. & Waller M.A. (2001). Variations of the deadlift. Strength and Conditioning Journal, 23, 66-73.
  63. Potvin, J. R., McGill, S. M., & Norman, R. W. (1991). Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine, 16(9), 1099–1107. https://doi.org/10.1097/00007632-199109000-00015
  64. Potvin, J. R., Norman, R. W., & McGill, S. M. (1991). Reduction in anterior shear forces on the L 4L 5 disc by the lumbar musculature. Clinical biomechanics (Bristol, Avon), 6(2), 88–96. https://doi.org/10.1016/0268-0033(91)90005-B
  65. Ribeiro, D. C., Aldabe, D., Abbott, J. H., Sole, G., & Milosavljevic, S. (2012). Dose-response relationship between work-related cumulative postural exposure and low back pain: a systematic review. The Annals of occupational hygiene, 56(6), 684–696. https://doi.org/10.1093/annhyg/mes003
  66. Ross, R., Han, J., & Slover, J. (2023). Chronic Lower Back Pain in Weight Lifters: Epidemiology, Evaluation, and Management. JBJS reviews, 11(6), 10.2106/JBJS.RVW.22.00228. https://doi.org/10.2106/JBJS.RVW.22.00228
  67. Saraceni, N., Campbell, A., Kent, P., Ng, L., Straker, L., & O'Sullivan, P. (2021). Exploring lumbar and lower limb kinematics and kinetics for evidence that lifting technique is associated with LBP. PloS one, 16(7), e0254241. https://doi.org/10.1371/journal.pone.0254241
  68. Saraceni, N., Campbell, A., Kent, P., Ng, L., Straker, L., & O'Sullivan, P. (2023). An Exploration of the Influence of Non-Biomechanical Factors on Lifting-Related LBP. International journal of environmental research and public health, 20(3), 1903. https://doi.org/10.3390/ijerph20031903
  69. Saraceni, N., Kent, P., Ng, L., Campbell, A., Straker, L., & O'Sullivan, P. (2020). To Flex or Not to Flex? Is There a Relationship Between Lumbar Spine Flexion During Lifting and Low Back Pain? A Systematic Review With Meta-analysis. The Journal of orthopaedic and sports physical therapy, 50(3), 121–130. https://doi.org/10.2519/jospt.2020.9218
  70. Schollum, M. L., Wade, K. R., Shan, Z., Robertson, P. A., Thambyah, A., & Broom, N. D. (2018). The Influence of Concordant Complex Posture and Loading Rate on Motion Segment Failure: A Mechanical and Microstructural Investigation. Spine, 43(19), E1116–E1126. https://doi.org/10.1097/BRS.0000000000002652
  71. Shan, Z., Wade, K. R., Schollum, M. L., Robertson, P. A., Thambyah, A., & Broom, N. D. (2017). A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 26(10), 2629–2641. https://doi.org/10.1007/s00586-017-5253-x
  72. Simunic, D. I., Robertson, P. A., & Broom, N. D. (2004). Mechanically induced disruption of the healthy bovine intervertebral disc. Spine, 29(9), 972–978. https://doi.org/10.1097/00007632-200405010-00005
  73. Skrzypiec, D. M., Klein, A., Bishop, N. E., Stahmer, F., Püschel, K., Seidel, H., Morlock, M. M., & Huber, G. (2012). Shear strength of the human lumbar spine. Clinical biomechanics (Bristol, Avon), 27(7), 646–651. https://doi.org/10.1016/j.clinbiomech.2012.04.003
  74. Smeathers J. E. (1984). Some time dependent properties of the intervertebral joint when under compression. Engineering in medicine, 13(2), 83–87. https://doi.org/10.1243/emed_jour_1984_013_021_02
  75. Tan, J. C., Parnianpour, M., Nordin, M., Hofer, H., & Willems, B. (1993). Isometric maximal and submaximal trunk extension at different flexed positions in standing. Triaxial torque output and EMG. Spine, 18(16), 2480–2490. https://doi.org/10.1097/00007632-199312000-00018
  76. Tampier, C., Drake, J. D., Callaghan, J. P., & McGill, S. M. (2007). Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine, 32(25), 2869–2874. https://doi.org/10.1097/BRS.0b013e31815b64f5
  77. van Dieën, J. H., Hoozemans, M. J., & Toussaint, H. M. (1999). Stoop or squat: a review of biomechanical studies on lifting technique. Clinical biomechanics (Bristol, Avon), 14(10), 685–696. https://doi.org/10.1016/s0268-0033(99)00031-5
  78. Verbeek, J. H., Martimo, K. P., Karppinen, J., Kuijer, P. P., Viikari-Juntura, E., & Takala, E. P. (2011). Manual material handling advice and assistive devices for preventing and treating back pain in workers. The Cochrane database of systematic reviews, (6), CD005958. https://doi.org/10.1002/14651858.CD005958.pub3
  79. Veres, S. P., Robertson, P. A., & Broom, N. D. (2009). The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine, 34(21), 2288–2296. https://doi.org/10.1097/BRS.0b013e3181a49d7e
  80. Veres, S. P., Robertson, P. A., & Broom, N. D. (2010). ISSLS prize winner: how loading rate influences disc failure mechanics: a microstructural assessment of internal disruption. Spine, 35(21), 1897–1908. https://doi.org/10.1097/BRS.0b013e3181d9b69e
  81. Vigotsky, A. D., Harper, E. N., Ryan, D. R., & Contreras, B. (2015). Effects of load on good morning kinematics and EMG activity. PeerJ, 3, e708. https://doi.org/10.7717/peerj.708
  82. van Dieën, J. H., Hoozemans, M. J., & Toussaint, H. M. (1999). Stoop or squat: a review of biomechanical studies on lifting technique. Clinical biomechanics (Bristol, Avon), 14(10), 685–696. https://doi.org/10.1016/s0268-0033(99)00031-5
  83. von Arx, M., Liechti, M., Connolly, L., Bangerter, C., Meier, M. L., & Schmid, S. (2021). From Stoop to Squat: A Comprehensive Analysis of Lumbar Loading Among Different Lifting Styles. Frontiers in bioengineering and biotechnology, 9, 769117. https://doi.org/10.3389/fbioe.2021.769117
  84. Wade, K. R., Robertson, P. A., Thambyah, A., & Broom, N. D. (2014). How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine, 39(13), 1018–1028. https://doi.org/10.1097/BRS.0000000000000262
  85. Wade, K. R., Robertson, P. A., Thambyah, A., & Broom, N. D. (2015). "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation. Spine, 40(12), 891–901. https://doi.org/10.1097/BRS.0000000000000888
  86. Wade, K. R., Schollum, M. L., Robertson, P. A., Thambyah, A., & Broom, N. D. (2017). A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 26(10), 2616–2628. https://doi.org/10.1007/s00586-017-5252-y
  87. Wai, E. K., Roffey, D. M., Bishop, P., Kwon, B. K., & Dagenais, S. (2010). Causal assessment of occupational lifting and low back pain: results of a systematic review. The spine journal : official journal of the North American Spine Society, 10(6), 554–566. https://doi.org/10.1016/j.spinee.2010.03.033
  88. Wang, Z., Zan, X., Li, Y., Lu, Y., Xia, Y., & Pan, X. (2023). Comparative efficacy different resistance training protocols on bone mineral density in postmenopausal women: A systematic review and network meta-analysis. Frontiers in physiology, 14, 1105303. https://doi.org/10.3389/fphys.2023.1105303
  89. Washmuth, N. B., McAfee, A. D., & Bickel, C. S. (2022). Lifting Techniques: Why Are We Not Using Evidence To Optimize Movement?. International journal of sports physical therapy, 17(1), 104–110. https://doi.org/10.26603/001c.30023

Beitrag 7:

  1. Behringer, M., Vom Heede, A., Matthews, M., & Mester, J. (2011). Effects of strength training on motor performance skills in children and adolescents: a meta-analysis. Pediatric exercise science, 23(2), 186–206. https://doi.org/10.1123/pes.23.2.186
  2. Bompa, T. (2015). Conditioning young athletes. Human Kinetics.
  3. Caine, D., DiFiori, J., & Maffulli, N. (2006). Physeal injuries in children's and youth sports: reasons for concern?. British journal of sports medicine, 40(9), 749–760. https://doi.org/10.1136/bjsm.2005.017822
  4. Chaabene, H., Lesinski, M., Behm, D. & Granacher, U. (2020). Performance- and health-related benefits of youth resistance training. Sports Orthopaedics and Traumatology, 36(3), 231-240. https://doi.org/10.1016/j.orthtr.2020.05.001
  5. Chaput, J. P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: summary of the evidence. The international journal of behavioral nutrition and physical activity, 17(1), 141. https://doi.org/10.1186/s12966-020-01037-z
  6. García-Hermoso, A., Ramírez-Campillo, R., & Izquierdo, M. (2019). Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports medicine (Auckland, N.Z.), 49(7), 1079–1094. https://doi.org/10.1007/s40279-019-01098-6
  7. García-Hermoso, A., Ramírez-Vélez, R., García-Alonso, Y., Alonso-Martínez, A. M., & Izquierdo, M. (2020). Association of Cardiorespiratory Fitness Levels During Youth With Health Risk Later in Life: A Systematic Review and Meta-analysis. JAMA pediatrics, 174(10), 952–960. https://doi.org/10.1001/jamapediatrics.2020.2400
  8. Faigenbaum, A. D., Milliken, L. A., & Westcott, W. L. (2003). Maximal strength testing in healthy children. Journal of strength and conditioning research17(1), 162–166. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.8731&rep=rep1&type=pdf
  9. Faigenbaum, A. D., Kraemer, W. J., Blimkie, C. J., Jeffreys, I., Micheli, L. J., Nitka, M., & Rowland, T. W. (2009). Youth resistance training: updated position statement paper from the national strength and conditioning association. Journal of strength and conditioning research, 23(5 Suppl), S60–S79. https://doi.org/10.1519/JSC.0b013e31819df407
  10. Faigenbaum, A.D., Stracciolini A., MacDonald J.P., . (2022). Mythology of youth resistance training. British Journal of Sports Medicine Published Online First: 09 June 2022. https://doi.org/10.1136/bjsports-2022-105804
  11. Ferrauti, A. (2020). Trainingswissenschaft für die Sportpraxis. Springer Verlag.
  12. Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet. Child & adolescent health, 4(1), 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2
  13. Harries, S. K., Lubans, D. R., & Callister, R. (2012). Resistance training to improve power and sports performance in adolescent athletes: a systematic review and meta-analysis. Journal of science and medicine in sport, 15(6), 532–540. https://doi.org/10.1016/j.jsams.2012.02.005
  14. Lesinski, M., Prieske, O., & Granacher, U. (2016). Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis. British journal of sports medicine, 50(13), 781–795. https://doi.org/10.1136/bjsports-2015-095497
  15. McQuilliam, S. J., Clark, D. R., Erskine, R. M., & Brownlee, T. E. (2020). Free-Weight Resistance Training in Youth Athletes: A Narrative Review. Sports medicine (Auckland, N.Z.), 50(9), 1567–1580. https://doi.org/10.1007/s40279-020-01307-7
  16. Messing, S., Rütten, A., Abu-Omar, K., Ungerer-Röhrich, U., Goodwin, L., Burlacu, I., & Gediga, G. (2019). How Can Physical Activity Be Promoted Among Children and Adolescents? A Systematic Review of Reviews Across Settings. Frontiers in public health, 7, 55. https://doi.org/10.3389/fpubh.2019.00055
  17. Milliken, L. A., Faigenbaum, A. D., Loud, R. L., & Westcott, W. L. (2008). Correlates of upper and lower body muscular strength in children. Journal of strength and conditioning research22(4), 1339–1346. https://doi.org/10.1519/JSC.0b013e31817393b1
  18. Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine and science in sports and exercise34(4), 689–694. https://doi.org/10.1097/00005768-200204000-00020
  19. Mountjoy, M., Andersen, L. B., Armstrong, N., Biddle, S., Boreham, C., Bedenbeck, H. P., Ekelund, U., Engebretsen, L., Hardman, K., Hills, A. P., Kahlmeier, S., Kriemler, S., Lambert, E., Ljungqvist, A., Matsudo, V., McKay, H., Micheli, L., Pate, R., Riddoch, C., Schamasch, P., … van Mechelen, W. (2011). International Olympic Committee consensus statement on the health and fitness of young people through physical activity and sport. British journal of sports medicine, 45(11), 839–848. https://doi.org/10.1136/bjsports-2011-090228
  20. Perkins, D. F., Jacobs, J. E., Barber, B. L., & Eccles, J. S. (2004). Childhood and Adolescent Sports Participation as Predictors of Participation in Sports and Physical Fitness Activities During Young Adulthood. Youth & Society, 35(4), 495–520. https://doi.org/10.1177/0044118X03261619
  21. Stricker, P. R., Faigenbaum, A. D., McCambridge, T. M., & COUNCIL ON SPORTS MEDICINE AND FITNESS (2020). Resistance Training for Children and Adolescents. Pediatrics, 145(6), e20201011. https://doi.org/10.1542/peds.2020-1011
  22. Tomkinson, G. R., & Olds, T. S. (2007). Secular changes in pediatric aerobic fitness test performance: the global picture. Medicine and sport science, 50, 46–66. https://doi.org/10.1159/000101075
  23. Tomkinson G. R. (2007). Global changes in anaerobic fitness test performance of children and adolescents (1958-2003). Scandinavian journal of medicine & science in sports, 17(5), 497–507. https://doi.org/10.1111/j.1600-0838.2006.00569.x

Beitrag 8:

  1. Bowman, T., Gervasoni, E., Arienti, C., Lazzarini, S. G., Negrini, S., Crea, S., Cattaneo, D., Carrozza, M. C. (2021). Wearable devices for biofeedback rehabilitation: a systematic review and meta-analysis to design application rules and estimate the effectiveness on balance and gait outcomes in neurological diseases. Sensors, 21(10), 3444. https://doi.org/10.3390/s21103444
  2. Cummins, C., Orr, R., O'Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports medicine (Auckland, N.Z.), 43(10), 1025–1042. https://doi.org/10.1007/s40279-013-0069-2
  3. Da Silva, J. C., & De Souza, M. L. (2021). Neurofeedback training for cognitive performance improvement in healthy subjects: A systematic review. Psychology & Neuroscience, 14(3), 262. https://doi.org/10.1037/pne0000261
  4. Düking, P., Giessing, L., Frenkel, M. O., Koehler, K., Holmberg, H. C., & Sperlich, B. (2020). Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR mHealth and uHealth, 8(5), e16716. https://doi.org/10.2196/16716
  5. Fonseca, S. T., Souza, T. R., Verhagen, E., van Emmerik, R., Bittencourt, N. F. N., Mendonça, L. D. M., Andrade, A. G. P., Resende, R. A., & Ocarino, J. M. (2020). Sports Injury Forecasting and Complexity: A Synergetic Approach. Sports medicine (Auckland, N.Z.), 50(10), 1757–1770. https://doi.org/10.1007/s40279-020-01326-4
  6. Georgiou, K., Larentzakis, A. V., Khamis, N. N., Alsuhaibani, G. I., Alaska, Y. A., & Giallafos, E. J. (2018). Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Folia medica, 60(1), 7–20. https://doi.org/10.2478/folmed-2018-0012
  7. Gillinov, S., Etiwy, M., Wang, R., Blackburn, G., Phelan, D., Gillinov, A. M., Houghtaling, P., Javadikasgari, H., & Desai, M. Y. (2017). Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise. Medicine and science in sports and exercise, 49(8), 1697–1703. https://doi.org/10.1249/MSS.0000000000001284
  8. Halson, S. L., Peake, J. M., & Sullivan, J. P. (2016). Wearable Technology for Athletes: Information Overload and Pseudoscience?. International journal of sports physiology and performance, 11(6), 705–706. https://doi.org/10.1123/IJSPP.2016-0486
  9. Hamlin, M. J., Wilkes, D., Elliot, C. A., Lizamore, C. A., & Kathiravel, Y. (2019). Monitoring Training Loads and Perceived Stress in Young Elite University Athletes. Frontiers in physiology, 10, 34. https://doi.org/10.3389/fphys.2019.00034
  10. Helm, M. M., Carrier, B., Davis, D. W., Cruz, K., Barrios, B. & Navalta, J. W. (2021). Validation of the Garmin Fenix 6S Maximal Oxygen Consumption (VO2max) Estimate. International Journal of Exercise Science: Conference Proceedings, 14(1), 29.
  11. Henriksen, A., Johansson, J., Hartvigsen, G., Grimsgaard, S., & Hopstock, L. (2020). Measuring Physical Activity Using Triaxial Wrist Worn Polar Activity Trackers: A Systematic Review. International journal of exercise science, 13(4), 438–454.
  12. Hernando, D., Hernando, A., Casajús, J. A., Laguna, P., Garatachea, N., & Bailón, R. (2018). Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing. Medical & biological engineering & computing, 56(5), 781–794. https://doi.org/10.1007/s11517-017-1724-9
  13. Hinde, K., White, G., & Armstrong, N. (2021). Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors (Basel, Switzerland), 21(4), 1061. https://doi.org/10.3390/s21041061
  14. Impellizzeri F. M., Jeffries A. C., Weisman A., Coutts A. J., McCall A., McLaren S. J., Kalkhoven J. (2022). The ‘training load’ construct: why it is appropriate and scientific. Journal of Science and Medicine in Sport, 25(5), 445–448. https://doi.org/10.1016/j.jsams.2021.10.013
  15. Kelly, S. J., Murphy, A. J., Watsford, M. L., Austin, D., & Rennie, M. (2015). Reliability and validity of sports accelerometers during static and dynamic testing. International journal of sports physiology and performance, 10(1), 106–111. https://doi.org/10.1123/ijspp.2013-0408
  16. Lehrer, P., Kaur, K., Sharma, A., Shah, K., Huseby, R., Bhavsar, J., & Zhang, Y. (2020). Heart rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Applied Psychophysiology and Biofeedback, 45, 109-129. https://doi.org/10.1007/s10484-020-09466-z
  17. Li, X., Dunn, J., Salins, D., Zhou, G., Zhou, W., Schüssler-Fiorenza Rose, S. M., Perelman, D., Colbert, E., Runge, R., Rego, S., Sonecha, R., Datta, S., McLaughlin, T., & Snyder, M. P. (2017). Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information. PLoS biology, 15(1), e2001402. https://doi.org/10.1371/journal.pbio.2001402
  18. Lown, M., Brown, M., Brown, C., Yue, A. M., Shah, B. N., Corbett, S. J., Lewith, G., Stuart, B., Moore, M., & Little, P. (2020). Machine learning detection of Atrial Fibrillation using wearable technology. PloS one, 15(1), e0227401. https://doi.org/10.1371/journal.pone.0227401
  19. Luczak, T., Burch, R., Lewis, E., Chander, H., & Ball, J. (2020). State-of-the-art review of athletic wearable technology: What 113 strength and conditioning coaches and athletic trainers from the USA said about technology in sports. International Journal of Sports Science & Coaching, 15(1), 26–40. https://doi.org/10.1177/1747954119885244
  20. Lutz, J., Memmert, D., Raabe, D., Dornberger, R., & Donath, L. (2019). Wearables for Integrative Performance and Tactic Analyses: Opportunities, Challenges, and Future Directions. International journal of environmental research and public health, 17(1), 59. https://doi.org/10.3390/ijerph17010059
  21. Malone, J. J., Lovell, R., Varley, M. C., & Coutts, A. J. (2017). Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. International journal of sports physiology and performance, 12(Suppl 2), S218–S226. https://doi.org/10.1123/ijspp.2016-0236
  22. Martin, A., & Schmidt, J. (2023). Biofeedback und Neurofeedback (Vol. 88). Hogrefe Verlag GmbH & Company KG.
  23. Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., Alavi, A., Celli, A., Higgs, E., Dagan-Rosenfeld, O., Fay, B., Kirkpatrick, S., Kellogg, R., Gibson, M., Wang, T., Hunting, E. M., Mamic, P., Ganz, A. B., Rolnik, B., Li, X., … Snyder, M. P. (2020). Pre-symptomatic detection of COVID-19 from smartwatch data. Nature biomedical engineering, 4(12), 1208–1220. https://doi.org/10.1038/s41551-020-00640-6
  24. Molina-Garcia, P., Notbohm, H. L., Schumann, M., Argent, R., Hetherington-Rauth, M., Stang, J., Bloch, W., Cheng, S., Ekelund, U., Sardinha, L. B., Caulfield, B., Brønd, J. C., Grøntved, A., & Ortega, F. B. (2022). Validity of Estimating the Maximal Oxygen Consumption by Consumer Wearables: A Systematic Review with Meta-analysis and Expert Statement of the INTERLIVE Network. Sports medicine (Auckland, N.Z.), 52(7), 1577–1597. https://doi.org/10.1007/s40279-021-01639-y
  25. Müller, A. M., Wang, N. X., Yao, J., Tan, C. S., Low, I. C. C., Lim, N., Tan, J., Tan, A., & Müller-Riemenschneider, F. (2019). Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR mHealth and uHealth, 7(10), e14120. https://doi.org/10.2196/14120
  26. Nestor, B., Hunter, J., Kainkaryam, R., Drysdale, E., Inglis, J. B., Shapiro, A., Nagaraj, S., Ghassemi, M., Foschini, L., & Goldenberg, A. (2023). Machine learning COVID-19 detection from wearables. The Lancet. Digital health, 5(4), e182–e184. https://doi.org/10.1016/S2589-7500(23)00045-6
  27. Nicolella, D. P., Torres-Ronda, L., Saylor, K. J., & Schelling, X. (2018). Validity and reliability of an accelerometer-based player tracking device. PloS one, 13(2), e0191823. https://doi.org/10.1371/journal.pone.0191823
  28. Passfield, L., Murias, J. M., Sacchetti, M., & Nicolò, A. (2022). Validity of the Training-Load Concept. International journal of sports physiology and performance, 17(4), 507–514. https://doi.org/10.1123/ijspp.2021-0536
  29. Passler, S., Bohrer, J., Blöchinger, L., & Senner, V. (2019). Validity of Wrist-Worn Activity Trackers for Estimating VO2max and Energy Expenditure. International journal of environmental research and public health, 16(17), 3037. https://doi.org/10.3390/ijerph16173037
  30. Peake, J. M., Kerr, G., & Sullivan, J. P. (2018). A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Frontiers in physiology, 9, 743. https://doi.org/10.3389/fphys.2018.00743
  31. Renfree, A., Casado, A., & McLaren, S. (2022). Re-thinking athlete training loads: would you rather have one big rock or lots of little rocks dropped on your foot?. Research in sports medicine (Print), 30(5), 573–576. https://doi.org/10.1080/15438627.2021.1906672
  32. Scott, M. T., Scott, T. J., & Kelly, V. G. (2016). The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. Journal of strength and conditioning research, 30(5), 1470–1490. https://doi.org/10.1519/JSC.0000000000001221
  33. Sanders, D., Abt, G., Hesselink, M. K. C., Myers, T., & Akubat, I. (2017). Methods of Monitoring Training Load and Their Relationships to Changes in Fitness and Performance in Competitive Road Cyclists. International journal of sports physiology and performance, 12(5), 668–675. https://doi.org/10.1123/ijspp.2016-0454
  34. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461(7260), 53–59. https://doi.org/10.1038/nature08227
  35. Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C. A., & Drummond, C. K. (2019). Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ digital medicine, 2, 72. https://doi.org/10.1038/s41746-019-0150-9
  36. Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
  37. Shei, R. J., Holder, I. G., Oumsang, A. S., Paris, B. A., & Paris, H. L. (2022). Wearable activity trackers-advanced technology or advanced marketing?. European journal of applied physiology, 122(9), 1975–1990. https://doi.org/10.1007/s00421-022-04951-1
  38. Snyder, N. C., Willoughby, C. A., & Smith, B. K. (2021). Comparison of the Polar V800 and the Garmin Forerunner 230 to Predict V̇o2max. Journal of strength and conditioning research, 35(5), 1403–1409. https://doi.org/10.1519/JSC.0000000000002931
  39. Spierer, D. K., Rosen, Z., Litman, L. L., & Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of medical engineering & technology, 39(5), 264–271. https://doi.org/10.3109/03091902.2015.1047536
  40. Støve, M. P., Haucke, E., Nymann, M. L., Sigurdsson, T., & Larsen, B. T. (2019). Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. Journal of sports sciences, 37(8), 895–901. https://doi.org/10.1080/02640414.2018.1535563
  41. Sunny, J. S., Patro, C. P. K., Karnani, K., Pingle, S. C., Lin, F., Anekoji, M., Jones, L. D., Kesari, S., & Ashili, S. (2022). Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects. Sensors (Basel, Switzerland), 22(3), 756. https://doi.org/10.3390/s22030756
  42. Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable Photoplethysmographic Sensors—Past and Present. Electronics, 3, 282-302.
  43. ter Harmsel, J. F., Noordzij, M. L., Goudriaan, A. E., Dekker, J. J., Swinkels, L. T., van der Pol, T. M., & Popma, A. (2021). Biocueing and ambulatory biofeedback to enhance emotion regulation: a review of studies investigating non-psychiatric and psychiatric populations. International journal of psychophysiology, 159, 94-106. https://doi.org/10.1016/j.ijpsycho.2020.11.009
  44. Thompson, W.R. (2023). Worldwide Survey of Fitness Trends for 2023. American College of Sports Medicine Health & Fitness Journal, 27(1), 9-18. https://doi.org/10.1249/FIT.0000000000000834
  45. Thomson, E. A., Nuss, K., Comstock, A., Reinwald, S., Blake, S., Pimentel, R. E., Tracy, B. L., & Li, K. (2019). Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of sports sciences, 37(12), 1411–1419. https://doi.org/10.1080/02640414.2018.1560644

Beitrag 9:

  1. Adams, K., Kiefer, A., Panchuk, D., Hunter, A., MacPherson, R., & Spratford, W. (2020). From the field of play to the laboratory: Recreating the demands of competition with augmented reality simulated sport. Journal of sports sciences, 38(5), 486–493. https://doi.org/10.1080/02640414.2019.1706872
  2. Anglin, J. M., Sugiyama, T., & Liew, S. L. (2017). Visuomotor adaptation in head-mounted virtual reality versus conventional training. Scientific reports, 7, 45469. https://doi.org/10.1038/srep45469
  3. Araújo, D., & Davids, K. (2011). What exactly is acquired during skill acquisition. Journal of Consciousness Studies, 18.
  4. Brault, S., Bideau, B., Kulpa, R., & Craig, C. M. (2012). Detecting deception in movement: the case of the side-step in rugby. PloS one, 7(6), e37494. https://doi.org/10.1371/journal.pone.0037494
  5. Broadbent, D. P., Causer, J., Williams, A. M., & Ford, P. R. (2015). Perceptual-cognitive skill training and its transfer to expert performance in the field: future research directions. European journal of sport science, 15(4), 322–331. https://doi.org/10.1080/17461391.2014.957727
  6. Carboch, J., Süss, V., & Kocib, T. (2014). Ball machine usage in tennis: movement initiation and swing timing while returning balls from a ball machine and from a real server. Journal of sports science & medicine, 13(2), 304–308.
  7. Carl, E., Stein, A. T., Levihn-Coon, A., Pogue, J. R., Rothbaum, B., Emmelkamp, P., Asmundson, G. J. G., Carlbring, P., & Powers, M. B. (2019). Virtual reality exposure therapy for anxiety and related disorders: A meta-analysis of randomized controlled trials. Journal of anxiety disorders, 61, 27–36. https://doi.org/10.1016/j.janxdis.2018.08.003
  8. Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in psychology, 9, 2086. https://doi.org/10.3389/fpsyg.2018.02086
  9. Drew, S. A., Awad, M. F., Armendariz, J. A., Gabay, B., Lachica, I. J., & Hinkel-Lipsker, J. W. (2020). The Trade-Off of Virtual Reality Training for Dart Throwing: A Facilitation of Perceptual-Motor Learning With a Detriment to Performance. Frontiers in sports and active living, 2, 59. https://doi.org/10.3389/fspor.2020.00059
  10. Fortes, L. S., Almeida, S. S., Praça, G. M., Nascimento-Júnior, J. R. A., Lima-Junior, D., Barbosa, B. T., & Ferreira, M. E. C. (2021). Virtual reality promotes greater improvements than video-stimulation screen on perceptual-cognitive skills in young soccer athletes. Human movement science, 79, 102856. https://doi.org/10.1016/j.humov.2021.102856
  11. Garfjeld Roberts, P., Guyver, P., Baldwin, M., Akhtar, K., Alvand, A., Price, A. J., & Rees, J. L. (2017). Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA, 25(2), 616–625. https://doi.org/10.1007/s00167-016-4114-1
  12. Gibson, J.J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.
  13. Gray R. (2017). Transfer of Training from Virtual to Real Baseball Batting. Frontiers in psychology, 8, 2183. https://doi.org/10.3389/fpsyg.2017.02183
  14. Hadlow, S. M., Panchuk, D., Mann, D. L., Portus, M. R., & Abernethy, B. (2018). Modified perceptual training in sport: A new classification framework. Journal of science and medicine in sport, 21(9), 950–958. https://doi.org/10.1016/j.jsams.2018.01.011
  15. Harris, D. J., Bird, J. M., Smart, P. A., Wilson, M. R., & Vine, S. J. (2020). A Framework for the Testing and Validation of Simulated Environments in Experimentation and Training. Frontiers in psychology, 11, 605. https://doi.org/10.3389/fpsyg.2020.00605
  16. Harris, D., Buckingham, G., Wilson, M., Brookes, J., Mushtaq, F., Mon-Williams, M., et al. (2019a). Testing the fidelity and validity of a virtual reality golf putting simulator. PsyarXiv [Preprint]. https://doi.org/10.31234/osf.io/j2txe
  17. Harris, D. J., Buckingham, G., Wilson, M. R., & Vine, S. J. (2019b). Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action. Experimental brain research, 237(11), 2761–2766. https://doi.org/10.1007/s00221-019-05642-8
  18. Huang, Q., Lin, J., Han, R., Peng, C., & Huang, A. (2022). Using Virtual Reality Exposure Therapy in Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research, 25(2), 288–301. https://doi.org/10.1016/j.jval.2021.04.1285
  19. Isogawa, M., Mikami, D., Fukuda, T., Saijo, N., Takahashi, K., Kimata, H., & Kashino, M. (2018). What Can VR Systems Tell Sports Players? Reaction-Based Analysis of Baseball Batters in Virtual and Real Worlds. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 587-588.
  20. Johnson-Glenberg M. C. (2018). Immersive VR and Education: Embodied Design Principles That Include Gesture and Hand Controls. Frontiers in robotics and AI, 5, 81. https://doi.org/10.3389/frobt.2018.00081
  21. Kittel, A., Larkin, P., Cunningham, I., & Spittle, M. (2020). 360° Virtual Reality: A SWOT Analysis in Comparison to Virtual Reality. Frontiers in psychology, 11, 563474. https://doi.org/10.3389/fpsyg.2020.563474
  22. Krause, L., Farrow, D., Buszard, T., Pinder, R.A., & Reid, M. (2019). Application of representative learning design for assessment of common practice tasks in tennis. Psychology of Sport and Exercise, 41, 36–45.
  23. Le Noury, P., Buszard, T., Reid, M., & Farrow, D. (2021). Examining the representativeness of a virtual reality environment for simulation of tennis performance. Journal of sports sciences, 39(4), 412–420. https://doi.org/10.1080/02640414.2020.1823618
  24. Le Noury, P., Polman, R., Maloney, M., Gorman, A. (2022). A Narrative Review of the Current State of Extended Reality Technology and How it can be Utilised in Sport. Sports Medicine 52(3), 1473–1489. https://doi.org/10.1007/s40279-022-01669-0
  25. Levac, D. E., Huber, M. E., & Sternad, D. (2019). Learning and transfer of complex motor skills in virtual reality: a perspective review. Journal of neuroengineering and rehabilitation, 16(1), 121. https://doi.org/10.1186/s12984-019-0587-8
  26. Loffing, F., & Hagemann, N. (2014). On-court position influences skilled tennis players' anticipation of shot outcome. Journal of sport & exercise psychology, 36(1), 14–26. https://doi.org/10.1123/jsep.2013-0082
  27. Loffing, F., Sölter, F., Hagemann, N., & Strauss, B. (2016). On-court position and handedness in visual anticipation of stroke direction in tennis. Psychology of Sport and Exercise, 27, 195–204. https://doi.org/10.1016/j.psychsport.2016.08.014
  28. Magdalon, E. C., Michaelsen, S. M., Quevedo, A. A., & Levin, M. F. (2011). Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta psychologica, 138(1), 126–134. https://doi.org/10.1016/j.actpsy.2011.05.015
  29. Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D., Lombard, C., Antonova, S., Tremeer, M. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality 22(3), 183–198. https://doi.org/10.1007/s10055-017-0320-5
  30. Pagé, C., Bernier, P. M., & Trempe, M. (2019). Using video simulations and virtual reality to improve decision-making skills in basketball. Journal of sports sciences, 37(21), 2403–2410. https://doi.org/10.1080/02640414.2019.1638193
  31. Panchuk, D., Klusemann, M. J., & Hadlow, S. M. (2018). Exploring the Effectiveness of Immersive Video for Training Decision-Making Capability in Elite, Youth Basketball Players. Frontiers in psychology, 9, 2315. https://doi.org/10.3389/fpsyg.2018.02315
  32. Pinder, R. A., Davids, K., Renshaw, I., & Araújo, D. (2011). Representative learning design and functionality of research and practice in sport. Journal of sport & exercise psychology, 33(1), 146–155. https://doi.org/10.1123/jsep.33.1.146
  33. Putranto, J. S., Heriyanto, J., Kenny, Achmad, S., Kurniawan, A. (2023). Implementation of virtual reality technology for sports education and training: Systematic literature review. Procedia Computer Science, 216, 293-300. https://doi.org/10.1016/j.procs.2022.12.139
  34. Rauter, G., Sigrist, R., Koch, C., Crivelli, F., van Raai, M., Riener, R., & Wolf, P. (2013). Transfer of complex skill learning from virtual to real rowing. PloS one, 8(12), e82145. https://doi.org/10.1371/journal.pone.0082145
  35. Tirp, J., Steingroever, C., Wattie, N., Baker, J., & Schorer, J. (2015). Virtual Realities as Optimal Learning Environments in Sport - A Transfer Study of Virtual and Real Dart Throwing. Psychological test and assessment modeling, 57, 57.
  36. Truijen, S., Abdullahi, A., Bijsterbosch, D., van Zoest, E., Conijn, M., Wang, Y., Struyf, N., & Saeys, W. (2022). Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 43(5), 2995–3006. https://doi.org/10.1007/s10072-021-05855-2
  37. Wood, G., Wright, D., Harris, D., Pal, A., Franklin, Z., Vine, S. (2021). Testing the construct validity of a soccer-specific virtual reality simulator using novice, academy, and professional soccer players. Virtual Reality, 25(1), 43-51. https://doi.org/10.1007/s10055-020-00441-x
  38. Zhao, J., Mao, J., & Tan, J. (2022). Global trends and hotspots in research on extended reality in sports: A bibliometric analysis from 2000 to 2021. Digital health, 8, 20552076221131141. https://doi.org/10.1177/20552076221131141

Beitrag 10:

  1. Blauw-Hospers, C. H., & Hadders-Algra, M. (2005). A systematic review of the effects of early intervention on motor development. Developmental medicine and child neurology, 47(6), 421–432. https://doi.org/10.1111/j.1469-8749.2005.tb01165.x
  2. Brown, G. T., & Burns, S. A. (2001). The Efficacy of Neurodevelopmental Treatment in Paediatrics: A Systematic Review. British Journal of Occupational Therapy, 64(5), 235–244. https://doi.org/10.1177/030802260106400505
  3. Butler, C., & Darrah, J. (2001). Effects of neurodevelopmental treatment (NDT) for cerebral palsy: an AACPDM evidence report. Developmental medicine and child neurology43(11), 778–790. https://doi.org/10.1017/s0012162201001414
  4. Cano-de-la-Cuerda, R., Molero-Sánchez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., Molina-Rueda, F., Miangolarra-Page, J. C., & Torricelli, D. (2015). Theories and control models and motor learning: clinical applications in neuro-rehabilitation. Neurologia (Barcelona, Spain)30(1), 32–41. https://doi.org/10.1016/j.nrl.2011.12.010
  5. Latash, M., & Anson, J. (1996). What are “normal movements” in atypical populations? Behavioral and Brain Sciences,19(1), 55-68. https://doi.org/10.1017/S0140525X00041467
  6. Mayston M. (2002). Problem solving in neurological physiotherapy - setting the scene. In: S. Edwards (ed), Neurological Physiotherapy: A Problem Solving Approach. 2nd edition. Churchill Livingstone.
  7. Mayston M. (2008). Bobath Concept: Bobath@50: mid-life crisis--what of the future?. Physiotherapy research international : the journal for researchers and clinicians in physical therapy, 13(3), 131–136. *https://doi.org/10.1002/pri.413*
  8. Mayston M. (2016). Bobath and NeuroDevelopmental Therapy: what is the future?. Developmental medicine and child neurology, 58(10), 994. https://doi.org/10.1111/dmcn.13221
  9. Michielsen, M., Vaughan-Graham, J., Holland, A., Magri, A., & Suzuki, M. (2019). The Bobath concept - a model to illustrate clinical practice. Disability and rehabilitation, 41(17), 2080–2092. https://doi.org/10.1080/09638288.2017.1417496
  10. Morgan, C., Darrah, J., Gordon, A. M., Harbourne, R., Spittle, A., Johnson, R., & Fetters, L. (2016). Effectiveness of motor interventions in infants with cerebral palsy: a systematic review. Developmental medicine and child neurology, 58(9), 900–909. https://doi.org/10.1111/dmcn.13105
  11. Novak, I., Morgan, C., Fahey, M., Finch-Edmondson, M., Galea, C., Hines, A., Langdon, K., Namara, M. M., Paton, M. C., Popat, H., Shore, B., Khamis, A., Stanton, E., Finemore, O. P., Tricks, A., Te Velde, A., Dark, L., Morton, N., & Badawi, N. (2020). State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Current neurology and neuroscience reports, 20(2), 3. https://doi.org/10.1007/s11910-020-1022-z
  12. Raine S. (2006). Defining the Bobath concept using the Delphi technique. Physiotherapy research international : the journal for researchers and clinicians in physical therapy11(1), 4–13. https://doi.org/10.1002/pri.35
  13. Taft L.T. (1972). Are we handicapping the handicapped? *Developmental Medicine and Child Neurology, 14,*703-704.
  14. Te Velde, A., Morgan, C., Finch-Edmondson, M., McNamara, L., McNamara, M., Paton, M., Stanton, E., Webb, A., Badawi, N., & Novak, I. (2022). Neurodevelopmental Therapy for Cerebral Palsy: A Meta-analysis. Pediatrics, 149(6), e2021055061. https://doi.org/10.1542/peds.2021-055061
  15. Vaughan-Graham, J., Cheryl, C., Holland, A., Michielsen, M., Magri, A., Suzuki, M., & Brooks, D. (2020). Developing a revised definition of the Bobath concept: Phase three. Physiotherapy research international : the journal for researchers and clinicians in physical therapy, 25(3), e1832. https://doi.org/10.1002/pri.1832
  16. Vaughan-Graham, J., Cott, C., Holland, A., Michielsen, M., Magri, A., Suzuki, M., & Brooks, D. (2019). Developing a revised definition of the Bobath concept. Physiotherapy research international : the journal for researchers and clinicians in physical therapy, 24(2), e1762. https://doi.org/10.1002/pri.1762
  17. Zanon, M. A., Pacheco, R. L., Latorraca, C., Martimbianco, A., Pachito, D. V., & Riera, R. (2019). Neurodevelopmental Treatment (Bobath) for Children With Cerebral Palsy: A Systematic Review. Journal of child neurology, 34(11), 679–686. https://doi.org/10.1177/0883073819852237

Beitrag 11:

  1. Cano-de-la-Cuerda, R., Molero-Sánchez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., Molina-Rueda, F., Miangolarra-Page, J. C., & Torricelli, D. (2015). Theories and control models and motor learning: clinical applications in neuro-rehabilitation. Neurologia (Barcelona, Spain)30(1), 32–41. https://doi.org/10.1016/j.nrl.2011.12.010
  2. De-La-Barrera-Aranda, E., Gonzalez-Gerez, J. J., Saavedra-Hernandez, M., Fernandez-Bueno, L., Rodriguez-Blanco, C., & Bernal-Utrera, C. (2021). Vojta Therapy in Neuromotor Development of Pediatrics Patients with Periventricular Leukomalacia: Case Series. Medicina (Kaunas, Lithuania), 57(11), 1149. https://doi.org/10.3390/medicina57111149
  3. Franki, I., Desloovere, K., De Cat, J., Feys, H., Molenaers, G., Calders, P., Vanderstraeten, G., Himpens, E., & Van Broeck, C. (2012). The evidence-base for conceptual approaches and additional therapies targeting lower limb function in children with cerebral palsy: a systematic review using the ICF as a framework. Journal of rehabilitation medicine, 44(5), 396–405. https://doi.org/10.2340/16501977-0984
  4. Ha, S. Y., & Sung, Y. H. (2018). Effects of Vojta approach on diaphragm movement in children with spastic cerebral palsy. Journal of exercise rehabilitation, 14(6), 1005–1009. https://doi.org/10.12965/jer.1836498.249
  5. Jung, M. W., Landenberger, M., Jung, T., Lindenthal, T., & Philippi, H. (2017). Vojta therapy and neurodevelopmental treatment in children with infantile postural asymmetry: a randomised controlled trial. Journal of physical therapy science, 29(2), 301–306. https://doi.org/10.1589/jpts.29.301
  6. Kanda, T., Pidcock, F. S., Hayakawa, K., Yamori, Y., & Shikata, Y. (2004). Motor outcome differences between two groups of children with spastic diplegia who received different intensities of early onset physiotherapy followed for 5 years. Brain & development, 26(2), 118–126. https://doi.org/10.1016/S0387-7604(03)00111-6
  7. Karch, D., Boltshauser, E., Göhlich-Ratmann, G., Gross-Selbeck, G., Pietz, J., Schlack, H-G. (o.D.). PHYSIOTHERAPIE AUF NEUROPHYSIOLOGISCHER GRUNDLAGE NACH BOBATH UND VOJTA BEI KINDERN MIT ZEREBRALEN BEWEGUNGSSTÖRUNGEN (UNTER BESONDERER BERÜCKSICHTIGUNG VON INFANTILEN ZEREBRALPARESEN). Gesellschaft für Neuropädiatrie. https://gesellschaft-fuer-neuropaediatrie.org/wp-content/uploads/2018/12/publikation50.pdf
  8. Vojta Prinzip (o.D.) Internationale Vojta Gesellschaft e.V. https://www.vojta.com/de/vojta-prinzip/vojta-prinzip-2
  9. Kiebzak, W., Żurawski, A., Głuszek, S., Kosztołowicz, M., & Białek, W. A. (2021). Cortisol Levels in Infants with Central Coordination Disorders during Vojta Therapy. Children (Basel, Switzerland), 8(12), 1113. https://doi.org/10.3390/children8121113
  10. Lim, H., & Kim, T. (2013). Effects of vojta therapy on gait of children with spastic diplegia. Journal of physical therapy science, 25(12), 1605–1608. https://doi.org/10.1589/jpts.25.1605
  11. Ludewig, A., & Mähler, C. (1999). Krankengymnastische Frühbehandlung nach Vojta oder nach Bobath: Wie wird die Mutter-Kind-Beziehung beeinflusst? [Early Vojta- or Bobath-physiotherapy: what is the effect on mother-child relationship?]. Praxis der Kinderpsychologie und Kinderpsychiatrie, 48(5), 326–339.
  12. Novak, I., Morgan, C., Fahey, M., Finch-Edmondson, M., Galea, C., Hines, A., Langdon, K., Namara, M. M., Paton, M. C., Popat, H., Shore, B., Khamis, A., Stanton, E., Finemore, O. P., Tricks, A., Te Velde, A., Dark, L., Morton, N., & Badawi, N. (2020). State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Current neurology and neuroscience reports, 20(2), 3. https://doi.org/10.1007/s11910-020-1022-z
  13. Torró-Ferrero, G., Fernández-Rego, F. J., Jiménez-Liria, M. R., Agüera-Arenas, J. J., Piñero-Peñalver, J., Sánchez-Joya, M., Fernández-Berenguer, M. J., Rodríguez-Pérez, M., & Gomez-Conesa, A. (2022). Effect of physical therapy on bone remodelling in preterm infants: a multicenter randomized controlled clinical trial. BMC pediatrics, 22(1), 362. https://doi.org/10.1186/s12887-022-03402-2

Beitrag 12:

  1. Akçay, B., Çolak, T. K., Apti, A., Çolak, İ., & Kızıltaş, Ö. (2021). The reliability of the augmented Lehnert-Schroth and Rigo classification in scoliosis management. The South African journal of physiotherapy, 77(2), 1568. https://doi.org/10.4102/sajp.v77i2.1568
  2. Berdishevsky, H., Lebel, V. A., Bettany-Saltikov, J., Rigo, M., Lebel, A., Hennes, A., Romano, M., Białek, M., M'hango, A., Betts, T., de Mauroy, J. C., & Durmala, J. (2016). Physiotherapy scoliosis-specific exercises - a comprehensive review of seven major schools. Scoliosis and spinal disorders, 11, 20. https://doi.org/10.1186/s13013-016-0076-9
  3. Bullmann, V. & Liljenqvist, U. (2019). Die idiopathische Skoliose. Orthopädie und Unfallchirurgie up2date, 14(6). 571–585.
  4. Burger, M., Coetzee, W., du Plessis, L. Z., Geldenhuys, L., Joubert, F., Myburgh, E., van Rooyen, C., & Vermeulen, N. (2019). The effectiveness of Schroth exercises in adolescents with idiopathic scoliosis: A systematic review and meta-analysis. The South African journal of physiotherapy, 75(1), 904. https://doi.org/10.4102/sajp.v75i1.904
  5. Day, J. M., Fletcher, J., Coghlan, M., & Ravine, T. (2019). Review of scoliosis-specific exercise methods used to correct adolescent idiopathic scoliosis. Archives of physiotherapy, 9, 8. https://doi.org/10.1186/s40945-019-0060-9
  6. Fusco, C., Zaina, F., Atanasio, S., Romano, M., Negrini, A., & Negrini, S. (2011). Physical exercises in the treatment of adolescent idiopathic scoliosis: an updated systematic review. Physiotherapy theory and practice, 27(1), 80–114. https://doi.org/10.3109/09593985.2010.533342
  7. Kocaman, H., Bek, N., Kaya, M. H., Büyükturan, B., Yetiş, M., & Büyükturan, Ö. (2021). The effectiveness of two different exercise approaches in adolescent idiopathic scoliosis: A single-blind, randomized-controlled trial. PloS one, 16(4), e0249492. https://doi.org/10.1371/journal.pone.0249492
  8. Mordecai, S. C., & Dabke, H. V. (2012). Efficacy of exercise therapy for the treatment of adolescent idiopathic scoliosis: a review of the literature. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 21(3), 382–389. *https://doi.org/10.1007/s00586-011-2063-4*
  9. Negrini, S., Donzelli, S., Aulisa, A. G., Czaprowski, D., Schreiber, S., de Mauroy, J. C., Diers, H., Grivas, T. B., Knott, P., Kotwicki, T., Lebel, A., Marti, C., Maruyama, T., O'Brien, J., Price, N., Parent, E., Rigo, M., Romano, M., Stikeleather, L., Wynne, J., … Zaina, F. (2018). 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and spinal disorders, 13, 3. https://doi.org/10.1186/s13013-017-0145-8
  10. Negrini, S., Fusco, C., Minozzi, S., Atanasio, S., Zaina, F., & Romano, M. (2008). Exercises reduce the progression rate of adolescent idiopathic scoliosis: results of a comprehensive systematic review of the literature. Disability and rehabilitation, 30(10), 772–785. https://doi.org/10.1080/09638280801889568
  11. Romano, M., Minozzi, S., Zaina, F., Saltikov, J. B., Chockalingam, N., Kotwicki, T., Hennes, A. M., & Negrini, S. (2013). Exercises for adolescent idiopathic scoliosis: a Cochrane systematic review. Spine, 38(14), E883–E893. https://doi.org/10.1097/BRS.0b013e31829459f8
  12. Park, J. H., Jeon, H. S., & Park, H. W. (2018). Effects of the Schroth exercise on idiopathic scoliosis: a meta-analysis. European journal of physical and rehabilitation medicine, 54(3), 440–449. https://doi.org/10.23736/S1973-9087.17.04461-6
  13. Weiss H. R. (2011). The method of Katharina Schroth - history, principles and current development. Scoliosis, 6, 17. https://doi.org/10.1186/1748-7161-6-17
  14. Weiss, H. R., Lohschmidt, K., el-Obeidi, N., & Verres, C. (1997). Preliminary results and worst-case analysis of in patient scoliosis rehabilitation. Pediatric rehabilitation, 1(1), 35–40. https://doi.org/10.3109/17518429709060940
  15. Weiss, H. R., & Weiss, G. (2002). Curvature progression in patients treated with scoliosis in-patient rehabilitation--a sex and age matched controlled study. Studies in health technology and informatics, 91, 352–356.
  16. Weiss, H. R., Weiss, G., & Petermann, F. (2003). Incidence of curvature progression in idiopathic scoliosis patients treated with scoliosis in-patient rehabilitation (SIR): an age- and sex-matched controlled study. Pediatric rehabilitation, 6(1), 23–30. https://doi.org/10.1080/1363849031000095288

Beitrag 13:

  1. Al-Khudairy, L., Loveman, E., Colquitt, J. L., Mead, E., Johnson, R. E., Fraser, H., Olajide, J., Murphy, M., Velho, R. M., O'Malley, C., Azevedo, L. B., Ells, L. J., Metzendorf, M. I., & Rees, K. (2017). Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. The Cochrane database of systematic reviews, 6(6), CD012691. https://doi.org/10.1002/14651858.CD012691
  2. Cardel, M. I., Atkinson, M. A., Taveras, E. M., Holm, J. C., & Kelly, A. S. (2020). Obesity Treatment Among Adolescents: A Review of Current Evidence and Future Directions. JAMA pediatrics, 174(6), 609–617. https://doi.org/10.1001/jamapediatrics.2020.0085
  3. Cardel, M. I., Jastreboff, A. M., & Kelly, A. S. (2019). Treatment of Adolescent Obesity in 2020. JAMA, 322(17), 1707–1708. https://doi.org/10.1001/jama.2019.14725
  4. Cataldo, R., Huang, J., Calixte, R., Wong, A. T., Bianchi-Hayes, J., & Pati, S. (2016). Effects of overweight and obesity on motor and mental development in infants and toddlers. Pediatric obesity, 11(5), 389–396. https://doi.org/10.1111/ijpo.12077
  5. Chung, A. E., Skinner, A. C., Steiner, M. J., & Perrin, E. M. (2012). Physical activity and BMI in a nationally representative sample of children and adolescents. Clinical pediatrics, 51(2), 122–129. https://doi.org/10.1177/0009922811417291
  6. Colquitt, J. L., Loveman, E., O'Malley, C., Azevedo, L. B., Mead, E., Al-Khudairy, L., Ells, L. J., Metzendorf, M. I., & Rees, K. (2016). Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. The Cochrane database of systematic reviews, 3(3), CD012105. https://doi.org/10.1002/14651858.CD012105
  7. Daniels S. R. (2009). Complications of obesity in children and adolescents. International journal of obesity (2005), 33 Suppl 1, S60–S65. https://doi.org/10.1038/ijo.2009.20
  8. Egan, K. B., Ettinger, A. S., & Bracken, M. B. (2013). Childhood body mass index and subsequent physician-diagnosed asthma: a systematic review and meta-analysis of prospective cohort studies. BMC pediatrics13, 121. https://doi.org/10.1186/1471-2431-13-121
  9. García-Hermoso, A., Ramírez-Vélez, R., Ramírez-Campillo, R., Peterson, M. D., & Martínez-Vizcaíno, V. (2018). Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. British journal of sports medicine, 52(3), 161–166. https://doi.org/10.1136/bjsports-2016-096605
  10. Griffiths, L. J., Parsons, T. J., & Hill, A. J. (2010). Self-esteem and quality of life in obese children and adolescents: a systematic review. International journal of pediatric obesity : IJPO : an official journal of the International Association for the Study of Obesity5(4), 282–304. https://doi.org/10.3109/17477160903473697
  11. Gustafson, S. L., & Rhodes, R. E. (2006). Parental correlates of physical activity in children and early adolescents. Sports medicine (Auckland, N.Z.), 36(1), 79–97. https://doi.org/10.2165/00007256-200636010-00006
  12. Ho, M., Garnett, S. P., Baur, L. A., Burrows, T., Stewart, L., Neve, M., & Collins, C. (2013). Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA pediatrics, 167(8), 759–768. https://doi.org/10.1001/jamapediatrics.2013.1453
  13. Ho, M., Garnett, S. P., Baur, L. A., Burrows, T., Stewart, L., Neve, M., & Collins, C. (2013). Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA pediatrics, 167(8), 759–768. https://doi.org/10.1001/jamapediatrics.2013.1453
  14. Jiménez-Pavón, D., Kelly, J., & Reilly, J. J. (2010). Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. International journal of pediatric obesity : IJPO : an official journal of the International Association for the Study of Obesity, 5(1), 3–18. https://doi.org/10.3109/17477160903067601
  15. Kelley, G. A., Kelley, K. S., & Pate, R. R. (2015). Exercise and BMI in Overweight and Obese Children and Adolescents: A Systematic Review and Trial Sequential Meta-Analysis. BioMed research international, 2015, 704539. https://doi.org/10.1155/2015/704539
  16. Kelley, G. A., Kelley, K. S., & Pate, R. R. (2017). Exercise and BMI z-score in Overweight and Obese Children and Adolescents: A Systematic Review and Network Meta-Analysis of Randomized Trials. Journal of evidence-based medicine, 10(2), 108–128. https://doi.org/10.1111/jebm.12228
  17. Kelley, G. A., Kelley, K. S., & Pate, R. R. (2019). Exercise and adiposity in overweight and obese children and adolescents: a systematic review with network meta-analysis of randomised trials. BMJ open, 9(11), e031220. https://doi.org/10.1136/bmjopen-2019-031220
  18. Kelley, G. A., Kelley, K. S., & Pate, R. R. (2021). Exercise and Cardiovascular Disease Risk Factors in Children and Adolescents With Obesity: A Systematic Review With Meta-Analysis of Randomized Controlled Trials. American journal of lifestyle medicine, 16(4), 485–510. https://doi.org/10.1177/1559827620988839
  19. King, N. A., Caudwell, P., Hopkins, M., Byrne, N. M., Colley, R., Hills, A. P., Stubbs, J. R., & Blundell, J. E. (2007). Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity (Silver Spring, Md.), 15(6), 1373–1383. https://doi.org/10.1038/oby.2007.164
  20. Kopelmann, P. (2009). “Symposium 1: Overnutrition: Consequences and solutions. Foresight Report: The obesity challenge ahead.”
  21. Kremers, S. P., de Bruijn, G. J., Visscher, T. L., van Mechelen, W., de Vries, N. K., & Brug, J. (2006). Environmental influences on energy balance-related behaviors: a dual-process view. The international journal of behavioral nutrition and physical activity, 3, 9. https://doi.org/10.1186/1479-5868-3-9
  22. Lindberg, L., Hagman, E., Danielsson, P., Marcus, C., & Persson, M. (2020). Anxiety and depression in children and adolescents with obesity: a nationwide study in Sweden. BMC medicine18(1), 30. https://doi.org/10.1186/s12916-020-1498-z
  23. Mead, E., Brown, T., Rees, K., Azevedo, L. B., Whittaker, V., Jones, D., Olajide, J., Mainardi, G. M., Corpeleijn, E., O'Malley, C., Beardsmore, E., Al-Khudairy, L., Baur, L., Metzendorf, M. I., Demaio, A., & Ells, L. J. (2017). Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. The Cochrane database of systematic reviews, 6(6), CD012651. https://doi.org/10.1002/14651858.CD012651
  24. Miguel-Berges, M. L., Reilly, J. J., Moreno Aznar, L. A., & Jiménez-Pavón, D. (2018). Associations Between Pedometer-Determined Physical Activity and Adiposity in Children and Adolescents: Systematic Review. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine, 28(1), 64–75. https://doi.org/10.1097/JSM.0000000000000419
  25. Paulis, W. D., Silva, S., Koes, B. W., & van Middelkoop, M. (2014). Overweight and obesity are associated with musculoskeletal complaints as early as childhood: a systematic review. Obesity reviews : an official journal of the International Association for the Study of Obesity15(1), 52–67. https://doi.org/10.1111/obr.12067
  26. Reilly, J. J., & Kelly, J. (2011). Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. International journal of obesity (2005)35(7), 891–898. https://doi.org/10.1038/ijo.2010.222
  27. Reilly, J. J., Methven, E., McDowell, Z. C., Hacking, B., Alexander, D., Stewart, L., & Kelnar, C. J. (2003). Health consequences of obesity. Archives of disease in childhood, 88(9), 748–752. https://doi.org/10.1136/adc.88.9.748
  28. Ruotsalainen, H., Kyngäs, H., Tammelin, T., & Kääriäinen, M. (2015). Systematic review of physical activity and exercise interventions on body mass indices, subsequent physical activity and psychological symptoms in overweight and obese adolescents. Journal of advanced nursing, 71(11), 2461–2477. https://doi.org/10.1111/jan.12696
  29. Sommer, A., & Twig, G. (2018). The Impact of Childhood and Adolescent Obesity on Cardiovascular Risk in Adulthood: a Systematic Review. Current diabetes reports, 18(10), 91. https://doi.org/10.1007/s11892-018-1062-9
  30. Stoner, L., Beets, M. W., Brazendale, K., Moore, J. B., & Weaver, R. G. (2019). Exercise Dose and Weight Loss in Adolescents with Overweight-Obesity: A Meta-Regression. Sports medicine (Auckland, N.Z.), 49(1), 83–94. https://doi.org/10.1007/s40279-018-01040-2
  31. Stoner, L., Rowlands, D., Morrison, A., Credeur, D., Hamlin, M., Gaffney, K., Lambrick, D., & Matheson, A. (2016). Efficacy of Exercise Intervention for Weight Loss in Overweight and Obese Adolescents: Meta-Analysis and Implications. Sports medicine (Auckland, N.Z.), 46(11), 1737–1751. https://doi.org/10.1007/s40279-016-0537-6
  32. Styne, D. M., Arslanian, S. A., Connor, E. L., Farooqi, I. S., Murad, M. H., Silverstein, J. H., & Yanovski, J. A. (2017). Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. The Journal of clinical endocrinology and metabolism, 102(3), 709–757. https://doi.org/10.1210/jc.2016-2573
  33. Sutaria, S., Devakumar, D., Yasuda, S. S., Das, S., & Saxena, S. (2019). Is obesity associated with depression in children? Systematic review and meta-analysis. Archives of disease in childhood104(1), 64–74. https://doi.org/10.1136/archdischild-2017-314608
  34. United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition: Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
  35. Wansink B. (2006). Nutritional gatekeepers and the 72% solution. Journal of the American Dietetic Association, 106(9), 1324–1327. https://doi.org/10.1016/j.jada.2006.07.023
  36. World Health Organization (2021). Obesity and Overweight. who. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight