Quellen: Lernen
Beitrag 1:
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? https://doi.org/10.3389/fpsyg.2016.00508
Illeris, K. (2007). How we learn: Learning and non-learning in school and beyond. ISBN 0-203-93989-1.
Beitrag 2:
Illeris, K. (2007). How we learn: Learning and non-learning in school and beyond. Routledge.
Illeris, K. (2009). Contemporary Theories of Learning: Learning Theorists -- In Their Own Words. Routledge.
Beitrag 3:
lleris, K. (2007). How we learn: Learning and non-learning in school and beyond. Routledge.
Illeris, K. (2009). Contemporary Theories of Learning: Learning Theorists -- In Their Own Words. Routledge.
Beitrag 4:
Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence. https://doi.org/10.1111/j.1467-8624.1991.tb01602.x
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Denison, S., & Xu, F. (2014). The origins of probabilistic inference in human infants. https://doi.org/10.1016/j.cognition.2013.12.001
Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naïve theory of rational action. Trends in Cognitive Sciences, 7(7), 287–292. https://doi.org/10.1016/S1364-6613(03)00128-1
Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley & Sons.
Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. https://doi.org/10.1371/journal.pbio.0060011
Moon, C., Cooper, R. P., & Fifer, W. P. (1993). Two-day-olds prefer their native language. https://doi.org/10.1016/0163-6383(93)80007-U
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. https://doi.org/10.1016/j.cub.2017.05.044
Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. https://doi.org/10.1037/0033-295X.99.4.605
Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10‐month‐old infants. https://doi.org/10.1348/026151005X90704
Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. https://doi.org/10.1073/pnas.0704450105
Beitrag 5:
Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile, D. A. (2011). Brains on video games. Nature reviews. Neuroscience, 12(12), 763–768. https://doi.org/10.1038/nrn3135
Cardoso-Leite, P., & Bavelier, D. (2014). Video game play, attention, and learning: how to shape the development of attention and influence learning? https://doi.org/10.1097/wco.0000000000000077
Damşa, C., Nerland, M. and Andreadakis, Z.E. (2019), An ecological perspective on learner-constructed learning spaces. Br J Educ Technol, 50: 2075-2089. https://doi.org/10.1111/bjet.12855
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Gray, R. (2024). Perception & Action. Direct Learning. https://perceptionaction.com/resources/
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. https://doi.org/10.1038/nature01647
Jacobs, D. & Michaels, C. (2007). Direct Learning. Ecological Psychology. 19. 321-349. https://doi.org/10.1080/10407410701432337
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual review of neuroscience 10.1146/annurev-neuro-062111-150525
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual review of neuroscience, 13, 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059
Yoncheva, Y. N., Blau, V. C., Maurer, U., & McCandliss, B. D. (2010). Attentional focus during learning impacts N170 ERP responses to an artificial script. https://doi.org/10.1080%2F87565641.2010.480918
Beitrag 6:
Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. https://doi.org/10.1016/j.neuron.2009.06.009
Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. https://psycnet.apa.org/doi/10.1037/0096-3445.104.3.268
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. https://doi.org/10.1073/pnas.1319030111
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. https://doi.org/10.1016/j.neuron.2014.08.060
Kapur, S., Craik, F. I., Tulving, E., Wilson, A. A., Houle, S., & Brown, G. M. (1994). Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2008–2011. https://doi.org/10.1073/pnas.91.6.2008
Kirschner, P. A., & van Merriënboer, J. J. (2013). Do learners really know best? Urban legends in education. https://doi.org/10.1080/00461520.2013.804395
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological science, 26(6), 737–749. https://doi.org/10.1177/0956797615569355
Lederman, E. (2015). A process approach in manual and physical therapies: beyond the structural model. https://www.researchgate.net/profile/Eyal-Lederman/publication/288033233_A_process_approach_in_manual_and_physical_therapies_beyond_the_structural_model/links/593525d70f7e9beee7d17bbb/A-process-approach-in-manual-and-physical-therapies-beyond-the-structural-model.pdf
Mayer, R. E. (2004). Should There Be a Three-Strikes Rule Against Pure Discovery Learning? American Psychologist, 59(1), 14–19. https://doi.org/10.1037/0003-066X.59.1.14
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. https://doi.org/10.1111/j.1539-6053.2009.01038.x
Beitrag 7:
Balsam, P. D., & Gallistel, C. R. (2009). Temporal maps and informativeness in associative learning. Trends in neurosciences, 32(2), 73–78. https://doi.org/10.1016/j.tins.2008.10.004
Beckers, T., Miller, R. R., De Houwer, J., & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. 10.1037/0096-3445.135.1.92
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113(31), 8664–8668. https://doi.org/10.1073/pnas.1608207113
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
Palminteri, S., Kilford, E. J., Coricelli, G., & Blakemore, S. J. (2016). The computational development of reinforcement learning during adolescence. https://doi.org/10.1371/journal.pcbi.1004953
Rescorla, R. A. & Wagner, Allan R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. https://www.researchgate.net/publication/233820243_A_theory_of_Pavlovian_conditioning_Variations_in_the_effectiveness_of_reinforcement_and_nonreinforcement
Sisk, V. F., Burgoyne, A. P., Sun, J., Butler, J. L., & Macnamara, B. N. (2018). To What Extent and Under Which Circumstances Are Growth Mind-Sets Important to Academic Achievement? Two Meta-Analyses. Psychological science, 29(4), 549–571. https://doi.org/10.1177/0956797617739704
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. https://doi.org/10.1126/science.aaa3799.
Beitrag 8:
Antony, J. W., Gobel, E. W., O'hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. https://doi.org/10.1038/nn.3152
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science (New York, N.Y.), 340(6132), 639–642. https://doi.org/10.1126/science.1234330
Huber, R., Felice Ghilardi, M., Massimini, M., & Tononi, G. (2004). Local sleep and learning. https://doi.org/10.1038/nature02663
Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence During Sleep and Waking. The American Journal of Psychology, 35, 605–612. https://doi.org/10.2307/1414040
Jiang, X., Shamie, I., K Doyle, W., Friedman, D., Dugan, P., Devinsky, O., Eskandar, E., Cash, S. S., Thesen, T., & Halgren, E. (2017). Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex. Scientific reports, 7(1), 17380. https://doi.org/10.1038/s41598-017-17469-w
Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science (New York, N.Y.), 265(5172), 679–682. https://doi.org/10.1126/science.8036518
Kuriyama, K., Stickgold, R., & Walker, M. P. (2004). Sleep-dependent learning and motor-skill complexity. http://www.learnmem.org/cgi/doi/10.1101/lm.76304
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. https://doi.org/10.1126/science.1138581
Stickgold R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272–1278. https://doi.org/10.1038/nature04286
Wagner, U., Gais, S., Haider, H., Verleger, R., Born, J. (2004). Sleep inspires insight. https://doi.org/10.1038/nature02223
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. https://doi.org/10.1126/science.8036517
Beitrag 9:
Baur, N., & Blasius, J. (Eds.). (2014). Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-531-18939-0_82
Dehaene, S. (2020). How we learn: Why brains learn better than any machine... for now. ISBN 9780525559887.
Ditton, H., Maaz, K. (2022). Sozioökonomischer Status, Bildungserfolg und Bildungsteilhabe. In: Reinders, H., Bergs-Winkels, D., Prochnow, A., Post, I. (eds) Empirische Bildungsforschung. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-27277-7_57
Haring, R. (Ed.). (2019). Gesundheitswissenschaften. Berlin/Heidelberg: Springer. https://doi.org/10.1007/978-3-662-58314-2 (Generell eine Buchempfehlung für Studierende in den Gesundheitswissenschaften)
Haut, J. (2021). Sport und soziale Ungleichheit. In: Güllich, A., Krüger, M. (eds) Sport in Kultur und Gesellschaft. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53407-6_17